Root exudates from Lotus japonicus were found to contain at least three different hyphal branching-inducing compounds for the arbuscular mycorrhizal (AM) fungus Gigaspora margarita, one of which had been previously identified as (+)-5-deoxystrigol (5DS), a canonical strigolactone (SL). One of the two remaining unknown hyphal branching inducers was purified and named lotuslactone. Its structure was determined as methyl (E)-2-(3-acetoxy-2-hydroxy-7-methyl-1-oxo-1,2,3,4,5,6-hexahydroazulen-2-yl)-3-(((R)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)acrylate, by 1D and 2D NMR spectroscopy, and HR-ESI- and EI-MS. Although lotuslactone, a non-canonical SL, contains the AB-ring and the enol ether-bridged D-ring, it lacks the C-ring and has a seven-membered cycloheptadiene in the A-ring part as in medicaol, a major SL of Medicago truncatula. Lotuslactone was much less active than 5DS, but showed comparable activity to methyl carlactonoate (MeCLA) in inducing hyphal branching of G. margarita. Other natural non-canonical SLs including avenaol, heliolactone, and zealactone (methyl zealactonoate) were also found to be moderate to weak inducers of hyphal branching in the AM fungus. Lotuslactone strongly elicited seed germination in Phelipanche ramosa and Orobanche minor, but Striga hermonthica seeds were 100-fold less sensitive to this stimulant.
In the root exudate and root extracts of maize hybrid cv NK Falkone seven putative strigolactones were detected using UPLC-TQ-MS-MS. All seven compounds displayed MS-MS-fragmentation common for strigolactones and particularly the presence of a fragment of m/z 97 Da, which may indicate the presence of the so-called D-ring, suggests they are strigolactones. The levels of all these putative strigolactones increased upon phosphate starvation and decreased upon fluridone (carotenoid biosynthesis inhibitor) treatment, both of which are a common response for strigolactones. All seven compounds were subsequently isolated with prep-HPLC-MS. They all exhibited Striga hermonthica seed germination inducing activity just as the synthetic strigolactone analog GR24. The structure of two of the seven compounds was elucidated by NMR spectroscopy as: methyl (2E,3E)-4-(3,3-dimethyl-5-oxo-2-(prop-1-en-2-yl)tetrahydrofuran-2-yl)-2-(((4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)but-3-enoate (two diastereomers 1a and 1b). Strigolactones (1a/b) are closely related to the methyl ester of carlactonoic acid (MeCLA) and heliolactone. However, they contain a unique 4,4-dimethyltetrahydrofuran-2-one motif as the "A-ring" instead of the classical (di)methylcyclohexene. Because these compounds were isolated from maize (Zea mays) we called them "zealactone 1a and 1b". The implications of this discovery for our view on strigolactones and their biosynthesis are discussed.