Substrate of neurotoxic esterase NTE Neuropathy target esterase (not an alpha/beta hydrolase but a patatin fold). In vitro hydrolysis assay contains aminoantipyrine (2.5 mM) and K3Fe(CN)6 (5 mM) as detection reagents. Phenol reacts with aminoantipyrine and K3Fe(CN)6 to form a red/orange product recorded at 510 nm
Phenyl valerate (PV) is a substrate for measuring the PVase activity of neuropathy target esterase (NTE), a key molecular event of organophosphorus-induced delayed neuropathy. A protein with PVase activity in chicken (model for delayed neurotoxicity) was identified as butyrylcholinesterase (BChE). Purified human butyrylcholinesterase (hBChE) showed PVase activity with a similar sensitivity to inhibitors as its cholinesterase (ChE) activity. Further kinetic and theoretical molecular simulation studies were performed. The kinetics did not fit classic competition models among substrates. Partially mixed inhibition was the best-fitting model to acetylthiocholine (AtCh) interacting with PVase activity. ChE activity showed substrate activation, and non-competitive inhibition was the best-fitting model to PV interacting with the non-activated enzyme and partial non-competitive inhibition was the best fitted model for PV interacting with the activated enzyme by excess of AtCh. The kinetic results suggest that other sites could be involved in those activities. From the theoretical docking analysis, we deduced other more favorable sites for binding PV related with Asn289 residue, situated far from the catalytic site ("PV-site"). Both substrates acethylcholine (ACh) and PV presented similar docking values in both the PV-site and catalytic site pockets, which explained some of the observed substrate interactions. Molecular dynamic simulations based on the theoretical structure of crystallized hBChE were performed. Molecular modeling studies suggested that PV has a higher potential for non-competitive inhibition, being also able to inhibit the hydrolysis of ACh through interactions with the PV-site. Further theoretical studies also suggested that PV could yet be able to promote competitive inhibition. We concluded that the kinetic and theoretical studies did not fit the simple classic competition among substrates, but were compatible with the interaction with two different binding sites.
        
Title: Resolving pathways of interaction of mipafox and a sarin analog with human acetylcholinesterase by kinetics, mass spectrometry and molecular modeling approaches Mangas I, Taylor P, Vilanova E, Estevez J, Franca TCC, Komives E, Radic Z Ref: Archives of Toxicology, 90:603, 2016 : PubMed
The hydroxyl oxygen of the catalytic triad serine in the active center of serine hydrolase acetylcholinesterase (AChE) attacks organophosphorus compounds (OPs) at the phosphorus atom to displace the primary leaving group and to form a covalent bond. Inhibited AChE can be reactivated by cleavage of the Ser-phosphorus bond either spontaneously or through a reaction with nucleophilic agents, such as oximes. At the same time, the inhibited AChE adduct can lose part of the molecule by progressive dealkylation over time in a process called aging. Reactivation of the aged enzyme has not yet been demonstrated. Here, our goal was to study oxime reactivation and aging reactions of human AChE inhibited by mipafox or a sarin analog (Flu-MPs, fluorescent methylphosphonate). Progressive reactivation was observed after Flu-MPs inhibition using oxime 2-PAM. However, no reactivation was observed after mipafox inhibition with 2-PAM or the more potent oximes used. A peptide fingerprinted mass spectrometry (MS) method, which clearly distinguished the peptide with the active serine (active center peptide, ACP) of the human AChE adducted with OPs, was developed by MALDI-TOF and MALDI-TOF/TOF. The ACP was detected with a diethyl-phosphorylated adduct after paraoxon inhibition, and with an isopropylmethyl-phosphonylated and a methyl-phosphonylated adduct after Flu-MPs inhibition and subsequent aging. Nevertheless, nonaged nonreactivated complexes were seen after mipafox inhibition and incubation with oximes, where MS data showed an ACP with an NN diisopropyl phosphoryl adduct. The kinetic experiments showed no reactivation of activity. The computational molecular model analysis of the mipafox-inhibited hAChE plots of energy versus distance between the atoms separated by dealkylation showed a high energy demand, thus little aging probability. However, with Flu-MPs and DFP, where aging was observed in our MS data and in previously published crystal structures, the energy demand calculated in modeling was lower and, consequently, aging appeared as a more likely reaction. We document here direct evidence for a phosphorylated hAChE refractory to oxime reactivation, although we observed no aging.
        
Title: Esterases hydrolyze phenyl valerate activity as targets of organophosphorus compounds Mangas I, Estevez J, Vilanova E Ref: Chemico-Biological Interactions, 259:358, 2016 : PubMed
OPs are a large diverse class of chemicals used for several purposes (pesticides, warfare agents, flame retardants, etc.). They can cause several neurotoxic disorders: acute cholinergic toxicity, organophosphorus-induced delayed neuropathy, long-term neurobehavioral and neuropsychological symptoms, and potentiation of neuropathy. Some of these syndromes cannot be fully understood with known molecular targets. Many enzyme systems have the potential to interact with OPs. Since the discovery of neuropathy target esterase (NTE), the esterases that hydrolyze phenyl valerate (PVases) have been of interest. PVase components are analyzed in chicken tissue, the animal model used for testing OP-delayed neurotoxicity. Three enzymatic components have been discriminated in serum, and three in a soluble fraction of peripheral nerve, three in a soluble fraction of brain, and four in a membrane fraction of brain have been established according to inhibitory kinetic properties combined with several inhibitors. The criteria and strategies to differentiate these enzymatic components are shown. In the brain soluble fraction three enzymatic components, namely Ealpha, Ebeta and Egamma, were found. Initial interest focused on Ealpha activity (highly sensitive to paraoxon and spontaneously reactivated, mipafox and resistant to PMSF). By protein separation methods, a subfraction enriched in Ealpha activity was obtained and 259 proteins were identified by Tandem Mass Spectrometry. Only one had the criteria for being serine-esterase identified as butyrylcholinesterase, which stresses the relationship between cholinesterases and PVases. The identification and characterization of the whole group of PVases targets of OPs (besides AChE, BuChE and NTE) is necessary to clarify the importance of these other targets in OPs neurotoxicity or on detoxication pathways. A systematic strategy has proven useful for the molecular identification of one enzymatic component, which can be applied to identify them all.
Phenyl valerate (PV) is a substrate for measuring the PVase activity of neuropathy target esterase (NTE), a key molecular event of organophosphorus-induced delayed neuropathy. A protein with PVase activity in chicken (model for delayed neurotoxicity) was identified as butyrylcholinesterase (BChE). Purified human butyrylcholinesterase (hBChE) showed PVase activity with a similar sensitivity to inhibitors as its cholinesterase (ChE) activity. Further kinetic and theoretical molecular simulation studies were performed. The kinetics did not fit classic competition models among substrates. Partially mixed inhibition was the best-fitting model to acetylthiocholine (AtCh) interacting with PVase activity. ChE activity showed substrate activation, and non-competitive inhibition was the best-fitting model to PV interacting with the non-activated enzyme and partial non-competitive inhibition was the best fitted model for PV interacting with the activated enzyme by excess of AtCh. The kinetic results suggest that other sites could be involved in those activities. From the theoretical docking analysis, we deduced other more favorable sites for binding PV related with Asn289 residue, situated far from the catalytic site ("PV-site"). Both substrates acethylcholine (ACh) and PV presented similar docking values in both the PV-site and catalytic site pockets, which explained some of the observed substrate interactions. Molecular dynamic simulations based on the theoretical structure of crystallized hBChE were performed. Molecular modeling studies suggested that PV has a higher potential for non-competitive inhibition, being also able to inhibit the hydrolysis of ACh through interactions with the PV-site. Further theoretical studies also suggested that PV could yet be able to promote competitive inhibition. We concluded that the kinetic and theoretical studies did not fit the simple classic competition among substrates, but were compatible with the interaction with two different binding sites.
Multiple epidemiological and experimental studies have demonstrated that exposure to organophosphorus compounds (OPs) is associated with a variety of neurological disorders. Some of these exposure symptoms cannot be precisely correlated with known molecular targets and mechanisms of toxicity. Most of the known molecular targets of OPs fall in the protein family of serine esterases. We have shown that three esterase components in the soluble fraction of chicken brain (an animal model frequently used in OP neurotoxicity assays) can be kinetically distinguished using paraoxon, mipafox and phenylmethyl sulfonyl fluoride as inhibitors, and phenyl valerate as a substrate; we termed them Ealpha, Ebeta and Egamma. The Ealpha-component, which is highly sensitive to paraoxon and mipafox and resistant to PMSF, has shown sensitivity to the substrate acetylthiocholine, and to ethopropazine and iso-OMPA (specific inhibitors of butyrylcholinesterase; BChE) but not to BW 284C51 (a specific inhibitor of acetylcholinesterase; AChE). In this work, we employed a large-scale proteomic analysis B with a LC/MS/MS TripleTOF system; 259 proteins were identified in a chromatographic fractionated sample enriched in Ealpha activity of the chicken brain soluble fraction. Bioinformatics analysis revealed that BChE is the only candidate protein identified to be responsible for almost all the Ealpha activity. This study demonstrates the potential information to be gained from combining kinetic dissection with large-scale proteomics and bioinformatics analyses for identification of proteins that are targets of OP toxicity and may be involved in detoxification of phosphoryl and carbonyl esters.
        
Title: New insights on molecular interactions of organophosphorus pesticides with esterases Mangas I, Estevez J, Vilanova E, Franca TCC Ref: Toxicology, 376:30, 2017 : PubMed
Organophosphorus compounds (OPs) are a large and diverse class of chemicals mainly used as pesticides and chemical weapons. People may be exposed to OPs in several occasions, which can produce several distinct neurotoxic effects depending on the dose, frequency of exposure, type of OP, and the host factors that influence susceptibility and sensitivity. These neurotoxic effects are mainly due to the interaction with enzyme targets involved in toxicological or detoxication pathways. In this work, the toxicological relevance of known OPs targets is reviewed. The main enzyme targets of OPs have been identified among the serine hydrolase protein family, some of them decades ago (e.g. AChE, BuChE, NTE and carboxylesterases), others more recently (e.g. lysophospholipase, arylformidase and KIA1363) and others which are not molecularly identified yet (e.g. phenylvalerate esterases). Members of this family are characterized by displaying serine hydrolase activity, containing a conserved serine hydrolase motif and having an alpha-beta hydrolase fold. Improvement in Xray-crystallography and in silico methods have generated new data of the interactions between OPs and esterases and have established new methods to study new inhibitors and reactivators of cholinesterases. Mass spectrometry for AChE, BChE and APH have characterized the active site serine adducts with OPs being useful to detect biomarkers of OPs exposure and inhibitory and postinhibitory reactions of esterases and OPs. The purpose of this review is focus specifically on the interaction of OP with esterases, mainly with type B-esterases, which are able to hydrolyze carboxylesters but inhibited by OPs by covalent phosphorylation on the serine or tyrosine residue in the active sites. Other related esterases in some cases with no-irreversible effect are also discussed. The understanding of the multiple molecular interactions is the basis we are proposing for a multi-target approach for understanding the organophosphorus toxicity.
        
Title: Resolving pathways of interaction of mipafox and a sarin analog with human acetylcholinesterase by kinetics, mass spectrometry and molecular modeling approaches Mangas I, Taylor P, Vilanova E, Estevez J, Franca TCC, Komives E, Radic Z Ref: Archives of Toxicology, 90:603, 2016 : PubMed
The hydroxyl oxygen of the catalytic triad serine in the active center of serine hydrolase acetylcholinesterase (AChE) attacks organophosphorus compounds (OPs) at the phosphorus atom to displace the primary leaving group and to form a covalent bond. Inhibited AChE can be reactivated by cleavage of the Ser-phosphorus bond either spontaneously or through a reaction with nucleophilic agents, such as oximes. At the same time, the inhibited AChE adduct can lose part of the molecule by progressive dealkylation over time in a process called aging. Reactivation of the aged enzyme has not yet been demonstrated. Here, our goal was to study oxime reactivation and aging reactions of human AChE inhibited by mipafox or a sarin analog (Flu-MPs, fluorescent methylphosphonate). Progressive reactivation was observed after Flu-MPs inhibition using oxime 2-PAM. However, no reactivation was observed after mipafox inhibition with 2-PAM or the more potent oximes used. A peptide fingerprinted mass spectrometry (MS) method, which clearly distinguished the peptide with the active serine (active center peptide, ACP) of the human AChE adducted with OPs, was developed by MALDI-TOF and MALDI-TOF/TOF. The ACP was detected with a diethyl-phosphorylated adduct after paraoxon inhibition, and with an isopropylmethyl-phosphonylated and a methyl-phosphonylated adduct after Flu-MPs inhibition and subsequent aging. Nevertheless, nonaged nonreactivated complexes were seen after mipafox inhibition and incubation with oximes, where MS data showed an ACP with an NN diisopropyl phosphoryl adduct. The kinetic experiments showed no reactivation of activity. The computational molecular model analysis of the mipafox-inhibited hAChE plots of energy versus distance between the atoms separated by dealkylation showed a high energy demand, thus little aging probability. However, with Flu-MPs and DFP, where aging was observed in our MS data and in previously published crystal structures, the energy demand calculated in modeling was lower and, consequently, aging appeared as a more likely reaction. We document here direct evidence for a phosphorylated hAChE refractory to oxime reactivation, although we observed no aging.
        
Title: Esterases hydrolyze phenyl valerate activity as targets of organophosphorus compounds Mangas I, Estevez J, Vilanova E Ref: Chemico-Biological Interactions, 259:358, 2016 : PubMed
OPs are a large diverse class of chemicals used for several purposes (pesticides, warfare agents, flame retardants, etc.). They can cause several neurotoxic disorders: acute cholinergic toxicity, organophosphorus-induced delayed neuropathy, long-term neurobehavioral and neuropsychological symptoms, and potentiation of neuropathy. Some of these syndromes cannot be fully understood with known molecular targets. Many enzyme systems have the potential to interact with OPs. Since the discovery of neuropathy target esterase (NTE), the esterases that hydrolyze phenyl valerate (PVases) have been of interest. PVase components are analyzed in chicken tissue, the animal model used for testing OP-delayed neurotoxicity. Three enzymatic components have been discriminated in serum, and three in a soluble fraction of peripheral nerve, three in a soluble fraction of brain, and four in a membrane fraction of brain have been established according to inhibitory kinetic properties combined with several inhibitors. The criteria and strategies to differentiate these enzymatic components are shown. In the brain soluble fraction three enzymatic components, namely Ealpha, Ebeta and Egamma, were found. Initial interest focused on Ealpha activity (highly sensitive to paraoxon and spontaneously reactivated, mipafox and resistant to PMSF). By protein separation methods, a subfraction enriched in Ealpha activity was obtained and 259 proteins were identified by Tandem Mass Spectrometry. Only one had the criteria for being serine-esterase identified as butyrylcholinesterase, which stresses the relationship between cholinesterases and PVases. The identification and characterization of the whole group of PVases targets of OPs (besides AChE, BuChE and NTE) is necessary to clarify the importance of these other targets in OPs neurotoxicity or on detoxication pathways. A systematic strategy has proven useful for the molecular identification of one enzymatic component, which can be applied to identify them all.
        
Title: Interaction between substrates suggests a relationship between organophosphorus-sensitive phenylvalerate- and acetylcholine-hydrolyzing activities in chicken brain Benabent M, Vilanova E, Mangas I, Sogorb MA, Estevez J Ref: Toxicol Lett, 230:132, 2014 : PubMed
Organophosphorus compounds (OPs) induce neurotoxic disorders through interactions with well-known target esterases, such as acetylcholinesterase and neuropathy target esterase (NTE). However, OPs interact with other esterases of unknown biological function. In soluble chicken brain fractions, three components of enzymatic phenylvalerate esterase activity (PVase) called Ealpha, Ebeta and Egamma, have been kinetically discriminated. These components are studied in this work for the relationship with acetylcholine-hydrolyzing activity. When Ealpha PVase activity (resistant PVase activity to 1500muM PMSF for 30min) was tested with different acetylthiocholine concentrations, inhibition was observed. The best-fitting model to the data was the non-competitive inhibition model (Km=0.12, 0.22mM, Ki=6.6, 7.6mM). Resistant acetylthiocholine-hydrolyzing activity to 1500muM PMSF was inhibited by phenylvalerate showing competitive inhibition (Km=0.09, 0.11mM; Ki=1.7, 2.2mM). Ebeta PVase activity (resistant PVase activity to 25muM mipafox for 30min) was not affected by the presence of acetylthiocholine, while resistant acetylthiocholine-hydrolyzing activity to 25muM mipafox showed competitive inhibition in the presence of phenylvalerate (Km=0.05, 0.06mM; Ki=0.44, 0.58mM). The interactions observed between the substrates of AChE and PVase suggest that part of PVase activity might be a protein with acetylthiocholine-hydrolyzing activity.
        
Title: Soluble phenyl valerate esterases of hen sciatic nerve and the potentiation of organophosphate induced delayed polyneuropathy Gambalunga A, Pasqualato F, Lotti M Ref: Chemico-Biological Interactions, 187:340, 2010 : PubMed
Contrary to some organophosphorus esters (OPs), certain esterase inhibitors including sulfonyl halides, carbamates and phosphinates do not cause axonal neuropathy, but they may exacerbate traumatic and some chemical insults to axons. This phenomenon is referred to as the promotion/potentiation of axonopathies. We report here promotion studies of the organophosphate induced delayed polyneuropathy (OPIDP). This neuropathy correlates with inhibition/aging of neuropathy target esterase, but this enzyme is not the target of promotion. Soluble phenyl valerate (PV) esterases in peak I (V(0)) of hen sciatic nerve were analysed. When these activities were inhibited in vitro by a mixture containing mipafox - an OP that causes OPIDP - paraoxon and p-toluene sulfonyl fluoride - two esterase inhibitors that do not cause either neuropathy or promotion-, then the remaining activity was sensitive to classical promoters such as phenylmethane sulfonyl fluoride (PMSF) and phenylmethyl benzyl carbamate. This PV-activity was not inhibited in sciatic nerves of hens treated with di-isopropyl phosphorofluoridate, at a dose that causes OPIDP. When these birds were further dosed with PMSF a dose-response relationship was observed between inhibition of PV-esterases, as above defined, and the severity of clinical responses. These data suggest that the target of promotion is embraced in peak I (V(0)) of soluble proteins of hen sciatic nerve.
Human liver has numerous hydrolytic enzymes involved in metabolism of endogenous and exogenous esters. Of these enzymes, carboxylesterases (EC 3.1.1.1) form an important group which hydrolyses many diverse ester substrates, including pro-ester drugs. Carboxylesterase activity was investigated in liver subcellular fractions from 22 individuals using the general carboxylesterase substrate phenylvalerate and the homologous series of esters methyl-, ethyl-, propyl-, butyl- and benzylparaben. The intra- and inter-individual variation in phenylvalerate and paraben metabolism was compared. Rates of hydrolysis were higher in microsomal fractions than cytosolic fractions for all compounds. The rate of paraben hydrolysis varied depending on the size of the paraben alcohol leaving group, showing a decrease with increasing leaving group size. Comparisons showed that individuals with high rates of hydrolysis towards methyl paraben also showed high rates of hydrolysis to the other parabens and phenylvalerate. Phenylvalerate as a non-specific carboxylesterase substrate was hydrolysed mainly by hCE1 in human livers and there was good correlation with small alcohol leaving group parabens, suggesting hCE1 involvement. Lower correlations with larger alcohol leaving group parabens are consistent with more hCE2 involvement.
        
Title: Specificity of procaine and ester hydrolysis by human, minipig, and rat skin and liver Jewell C, Ackermann C, Payne NA, Fate G, Voorman R, Williams FM Ref: Drug Metabolism & Disposition: The Biological Fate of Chemicals, 35:2015, 2007 : PubMed
The capacity of human, minipig, and rat skin and liver subcellular fractions to hydrolyze the anesthetic ester procaine was compared with carboxylesterase substrates 4-methylumbelliferyl-acetate, phenylvalerate, and para-nitrophenylacetate and the arylesterase substrate phenylacetate. Rates of procaine hydrolysis by minipig and human skin microsomal and cytosolic fractions were similar, with rat displaying higher activity. Loperamide inhibited procaine hydrolysis by human skin, suggesting involvement of human carboxylesterase hCE2. The esterase activity and inhibition profiles in the skin were similar for minipig and human, whereas rat had a higher capacity to metabolize esters and a different inhibition profile. Minipig and human liver and skin esterase activity was inhibited principally by paraoxon and bis-nitrophenyl phosphate, classical carboxylesterase inhibitors. Rat skin and liver esterase activity was inhibited additionally by phenylmethylsulfonyl fluoride and the arylesterase inhibitor mercuric chloride, indicating a different esterase profile. These results have highlighted the potential of skin to hydrolyze procaine following topical application, which possibly limits its pharmacological effect. Skin from minipig used as an animal model for assessing transdermal drug preparations had similar capacity to hydrolyze esters to human skin.
        
Title: The inhibition of the high sensitive peripheral nerve soluble esterases by mipafox. A new mathematical processing for the kinetics of inhibition of esterases by organophosphorus compounds Estevez J, Garcia-Perez AG, Barril J, Pellin M, Vilanova E Ref: Toxicol Lett, 151:171, 2004 : PubMed
In the study of organophosphorus (OP) sensitive enzymes, careful discrimination of specific components within a complex multienzymatic mixture is needed. However, standard kinetic analysis gives inconsistent results (i.e., apparently different kinetic constants at different inhibitor concentration) with complex multienzymatic mixtures. A strategy is now presented to obtain consistent kinetic parameters. In the peripheral nerve, soluble carboxylesterases measured with the substrate phenylvalerate (PV) are found with extremely high sensitivity to some inhibitors. Tissue preparations were preincubated with mipafox at nanomolar concentrations (up to 100 nM) for different inhibition times (up to 180 min). Inhibition data were analyzed with model equations of one or two sensitive (exponential) components, with or without resistant components. The most complex model was %act=A1e-k1It+A2e-k2It+AR (step 1). From the curve with the highest mipafox concentration (100 nM), the amplitude for the resistant component was determined as AR=15.1% (step 2). The model equation with a fixed AR value was again applied (step 3) to deduce the second-order inhibition rate constants (k1=2.6 x 10(6) M-1 min-1 and k2=0.28 x 10(6) M-1 min-1), being conserved consistently throughout all mipafox concentrations. Finally, using fixed values of AR, k1, and k2, the amplitudes for the two exponential (sensitive) components (A1 and A2) were re-estimated (A1=50.2% and A2=34.2%). The operational process was internally validated by the close similarity with values obtained by directly fitting with a three-dimensional model equation (activity versus time and inhibitor concentration) to the same inhibition data. Carboxylesterase fractions separated by preparative chromatography showed kinetic properties consistent with the kinetically discriminated components. As practical conclusion, for routine analysis of esterases in toxicological studies, a simplified procedure using the inhibition with mipafox at 30 nM, 1 microM, and 1 mM for 30 min is suggested to discriminate the main esterase components in soluble fraction preparations.
        
Title: Properties of phenyl valerate esterase activities from chicken serum are comparable with soluble esterases of peripheral nerves in relation with organophosphorus compounds inhibition Garcia-Perez AG, Barril J, Estevez J, Vilanova E Ref: Toxicol Lett, 142:1, 2003 : PubMed
Chicken serum, the usual in vivo animal for testing organophosphorus delayed neuropathy, has long been reported not to contain a homologous activity of the neuronal neuropathy target esterase (NTE) activity when it is assayed according to standard methods as the phenyl valerate esterase (PVase) activity, which is resistant to paraoxon and sensitive to mipafox. However, a PVase activity (1000-1500 nmol/min/ml) can be measured in serum that is extremely sensitive to both paraoxon, a non-neuropathic organophosphorus compound and mipafox, a model neuropathy inducer. The inhibition was time progressive in both cases, suggesting a covalent phosphorilating reaction. The fixed time inhibition curves suggest at least two sensitive components. The IC50 for 30 min, at 37 degrees C are 6 and 51 nM for paraoxon and 4 and 110 nM for mipafox, for every sensitive component. When paraoxon was removed from a serum sample pretreated with the inhibitor, the paraoxon sensitive PVase activity was recovered, in spite of showing a time progressive inhibition suggesting that hydrolytic dephosphorylating reaction recovered at a significant rate. The reactivation of the phosphorylated enzyme could explain that the time progressive inhibitions curves for long time with paraoxon tend to reach a plateau depending on the inhibition concentration. However, with mipafox, the curve approached the same maximal inhibitions at all concentrations as expected for a permanent covalent irreversible phosphorylation, which is coherent with the observations that the activity remained inhibited after removing the inhibitor. Data of serum esterases described in this paper showed similar properties to those previously reported for peripheral nerve soluble phenylvalerate esterase: (1) extremely high sensitivity to paraoxon and mipafox; (2) time progressive kinetic with two sensitive components; (3) recovery of activity after removal of paraoxon; and (4) permanent inhibition with mipafox. These properties of serum esterases are very similar to those of soluble fraction of peripheral nerves. So, serum PVases could be considered as appropriate biomarkers, as a mirror for the neural soluble paraoxon and mipafox sensitive soluble esterases that could be used for biomonitoring purpose.
        
Title: Paraoxon sensitive phenylvalerate hydrolase in assessing the severity of acute paraoxon poisoning Petroianu GA, Karcher B, Kern N, Bergler W, Rufer R Ref: J Toxicol Clinical Toxicology, 39:27, 2001 : PubMed
INTRODUCTION: Intoxications with organophosphorous compounds, especially paraoxon, are frequent. Organophosphorous compounds inhibit serine hydrolases such as acetylcholine, butyrilcholine, and carboxyl esterases although acetylcholine and butyrylcholine are too sensitive to paraoxon to be useful markers of severity. They cannot show a dose-dependent inhibition during an acute organophosphorous compounds exposure because maximal enzyme inhibition is reached at very low organophosphorous compounds concentrations. PURPOSE: To determine in vitro the dose-effect relationship between the activity of the paraoxon-sensitive phenylvalerate hydrolase, a member of the carboxvl esterases family, and the paraoxon dose, and to assess its utility as a putatively less sensitive enzyme marker to monitor the severity of an acute paraoxon intoxication. MATERIALS AND METHODS: Phenylvalerate hydrolase and butyrylcholine activities were determined in serum of nine healthy human volunteers before and after addition of different concentrations of paraoxon. The determination of phenyl-valerate hydrolase activity was carried out using a modification of the method described by Johnson. A commercially available kit was used to measure butyrylcholine activity. RESULTS: Paraoxon inhibits phenyl-valerate hydrolase activity at concentrations above 10 M. Maximal inhibition (approximately 50% of baseline) is achieved at concentrations above 2.5 x 10(-7) M. The IC50 value of paraoxon for phenyl-valerate hydrolase is 34+/-2 nM. The uninhibited phenyl-valerate hydrolase activity is due to paraoxon-resistent isoforms. Paraoxon begins inhibiting butyrylcholine activity at concentrations above 10(-9) M. At concentrations above 5 x 10(-5) M, no butyrylcholine activity is measulrable. The IC50 value of paraoxon for butyrylcholine is 150+/-23 nM. CONCLUSION: The paraoxon-sensitive subunit of phenyl-valerate hydrolase shows dose-dependent inhibition when exposed to paraoxon in vitro, but it is even more sensitive than butyrylcholine to paraoxon inhibition. Determinations of phenyl-valerate hydrolase activity to assess the severity of an acute organophosphorous compounds poisoning cannot be recommended, but phenyl-valerate hydrolase may have utility in worker surveillance.
        
Title: Reversible inhibition can profoundly mislead studies on progressive inhibition of enzymes: the interaction of paraoxon with soluble neuropathy target esterase Barril J, Vilanova E Ref: Chemico-Biological Interactions, 108:19, 1997 : PubMed
Neuropathy target esterase (NTE) is suggested to be the molecular target for the initiation of the organophosphorus induced delayed polyneuropathy (OPIDP). O,O'-diethyl p-nitrophenyl phosphate (paraoxon) was the non-neurotoxic OP of choice for the standard assay of NTE to block the non-relevant esterases (phenylvalerate hydrolases) because it was supposed not to inhibit the enzymic activity of the target protein while N,N'-diisopropyl phosphorodiamidofluoridate (mipafox) is the neuropathic OP used to inhibit (and so to detect) NTE activity. A soluble form of NTE (S-NTE) had previously been described in peripheral nerve which showed a different inhibitor response from that of the particulate NTE (P-NTE). The use of a sequential type of inhibition protocol revealed the presence of an activity component within S-NTE which was extremely sensitive to different esterase inhibitors. Such a soluble activity component remained hidden under the usual concurrent inhibition procedure with paraoxon and was about one order of magnitude more sensitive than P-NTE to the inhibitors studied in the present article. Our results suggest that paraoxon could produce a strong reversible effect on S-NTE when the concurrent procedure is used so that it interferes with its inhibition by both neuropathy inducers and promoters. As a result S-NTE seems to be much more sensitive, than previously believed, to several esterase inhibitors involved in either the genesis of delayed polyneuropathy and/or axonopathy promotion.
        
Title: Chromatographic discrimination of soluble neuropathy target esterase isoenzymes and related phenyl valerate esterases from chicken brain, spinal cord, and sciatic nerve Escudero MA, Cespedes MV, Vilanova E Ref: Journal of Neurochemistry, 68:2170, 1997 : PubMed
Neuropathy target esterase (NTE) activity is operatively defined in this work as the phenyl valerate esterase (PVase) activity resistant to 40 microM paraoxon but sensitive to 250 microM mipafox. Gel filtration chromatography with Sephacryl S-300 of the soluble fraction from spinal cord showed two PVase peaks containing NTE activity (S-NTE1 and S-NTE2). The titration curve corresponding to inhibition by mipafox was studied over the 1-250 microM range, in the presence of 40 microM paraoxon. The data revealed that S-NTE1 and S-NTE2 have different sensitivities to mipafox with I50 (30 min) values of 1.7 and 19 microM, respectively. This was similar to the pattern observed in the soluble fraction from sciatic nerve with two components (Vo peak, or S-NTE1; and 100-K peak, or S-NTE2) with different sensitivity to mipafox. However, in the brain soluble fraction, only the high-molecular-mass (>700-kDa) peak or S-NTE1 was obtained. It showed an I50 of 5.2 microM in the mipafox inhibition curve. The chromatographic profile was different on changing the pH in the subcellular fractionation. When the homogenized tissue was centrifuged at pH 6.8, the Vo peak activity decreased in the soluble fraction from these nerve tissues. This suggests that the Vo peak could be related to materials partly solubilized from membranes at higher pH. The chromatographic pattern and mipafox sensitivity suggest that the different tissues have a different NTE isoform composition. S-NTE2 should be a different entity than S-NTE1 and particulate NTE. The potential role of soluble forms in the mechanism of initiation or promotion of neuropathy due to organophosphorus remain unknown.
        
Title: Phenyl valerate esterases other than neuropathy target esterase and the promotion of organophosphate polyneuropathy Milatovic D, Moretto A, Osman KA, Lotti M Ref: Chemical Research in Toxicology, 10:1045, 1997 : PubMed
Certain esterase inhibitors (such as phenylmethanesulfonyl fluoride, PMSF) enhance the clinical and morphological signs of organophosphate-induced delayed polyneuropathy (OPIDP) in hens. This is called promotion of OPIDP. The target of promotion is unknown, but it is likely to be different from neuropathy target esterase (NTE), the target of OPIDP, NTE is a neural phenyl valerate (PV) esterase, operationally defined by selective inhibition with organophosphates. This study was aimed to ascertain whether the target for promotion is a PV esterase other than NTE. Brain and sciatic nerve PV esterases of hens were incubated with diisopropylphosphorofluoridate (DFP; 5 microM) or N,N-diisopropyl phosphorodiamidofluoridate (mipafox; 50 microM) to inhibit NTE and other esterases thought not to be relevant to promotion. Remaining activities, quantitatively similar after either inhibition, were titrated with PMSF (up to 500 microM) and analysis of time course of inhibition showed first-order kinetics. Mipafox (50 microM)-resistant PMSF (500 microM)-sensitive activity (about 80% of mipafox-resistant ones) was tested both in vitro and in vivo with several inhibitors. No correlation was found between inhibition of mipafox-resistant PMSF-sensitive activity and the capability of several inhibitors to promote OPIDP. We conclude that the target of promotion is unlikely to be a PV esterase resistant to mipafox (50 microM).
        
Title: An automatable microassay for phenyl valerate esterase activities sensitive to organophosphorus compounds Escudero MA, Sogorb MA, Vilanova E Ref: Toxicol Lett, 89:241, 1996 : PubMed
An automatable microassay method developed for phenyl valerate esterase (PVase) activity has been applied to determine the following activities in the soluble fraction of hen sciatic nerve: activity A (total PVase activity), activity B (paraoxon-resistant PVase activity), activity C (PVase activity resistant to 40 microM paraoxon and 250 microM mipafox) and neuropathy target esterase (NTE) activity (resistant to 40 microM paraoxon but sensitive to 250 microM mipafox), operationally defined as activity (B-C). This microassay is based on the technique described by Barril et al. (Toxicology. 1988. 49:107-114). The Automated Biomek 1000 Station was used, which guarantees both inter- and intra-assay reproducibility of the results, and shortens the total assay time. The technical problems involved when processing many samples were thus resolved and with same regards it can also apply manually and using a microplate reader. In the case of activity A, the sensitivity of the method allowed the detection of activity in 1 microgram of protein (0.15 mg fresh sciatic nerve tissue), and the response was linear for different concentrations of 0.15-1.7 mg fresh tissue. For B, C and NTE, sensitivity corresponded to 10 micrograms of protein (1.5 mg fresh tissue in the microassay), with a linear response in the range of 1.5-17 mg fresh tissue. The response was linear versus the time of enzyme-substrate reaction (30-150 min). As tissue concentration increased, the response became nonlinear at shorter time. The procedure may be used to measure other enzymatic activities that yield phenols and chlorophenols as reaction products.
        
Title: Organophosphorus inhibition and heat inactivation kinetics of particulate and soluble forms of peripheral nerve neuropathy target esterase Barril J, Tormo N, Diaz-Alejo N, Vilanova E Ref: Journal of Biochemical Toxicology, 10:211, 1995 : PubMed
Neuropathy target esterase (NTE) is the proposed target site for the mechanism of initiation of the so-called organophosphorus-induced delayed polyneuropathy (OPIDP). NTE is operationally defined in this article as the phenylvalerate esterase activity which is resistant to inhibition by 40 microM paraoxon and sensitive to 250 microM mipafox. Soluble (S-NTE) and particulate (P-NTE) forms of NTE had first been identified in hen sciatic nerve [E. Vilanova, J. Barril, V. Carrera, and M. C. Pellin (1990). J. Neurochem., 55, 1258-1265]. P-NTE and S-NTE showed different sensitivities to the inhibition by several organophosphorus compounds over a range of inhibitor concentrations for a 30 or 120 minute fixed inhibition time at 37 degrees C. S-NTE was less sensitive to the inhibition by O,O'-diisopropyl phosphorofluoridate (DFP), hexyl 2,5-dichlorophenyl phosphoramidate (H-DCP), and mipafox than P-NTE and brain NTE, while the opposite was true for O,S-dimethyl phosphoroamidothioate (methamidophos). For each of the four inhibitors assayed, S-NTE showed two components of different sensitivity according to the inhibition curves fitted with exponential models. However, the inhibition of P-NTE by mipafox, DFP, and HDCP did not show the presence of a considerable proportion of a second component. The kinetics of heat inactivation showed that P-NTE inactivated faster and to a greater extent than S-NTE. It is concluded that (1) sciatic nerve S-NTE is more different from brain NTE than P-NTE; (2) P-NTE and S-NTE have different sensitivities to the inhibition by the studied organophosphorous compounds; (3) the inhibition curves suggest that S-NTE has two different enzymatic components while these are not so evident for P-NTE.
        
Title: Comparative studies of two organophosphorus compounds in the mouse Mutch E, Kelly SS, Blain PG, Williams FM Ref: Toxicology Letters, 81:45, 1995 : PubMed
A rodent model, the albino mouse, was used to investigate the in vitro and in vivo capacity of 2 organophosphate (OP) compounds, mipafox and ecothiopate, to inhibit enzymes considered to be involved in the mechanisms of OP toxicity. Mipafox and ecothiopate were chosen as model compounds because the former can produce a delayed neuropathy whereas the latter does not. Mipafox (110 mumol/kg, s.c.) inhibited brain acetylcholinesterase (AChE), neuropathy target esterase (NTE) and phenylvalerate hydrolases by 58, 64 and 65%, while diaphragm AChE and phenylvalerate hydrolases were inhibited by 66 and 80%, respectively. In contrast, ecothiopate (0.5 mumol/kg) had no effect on brain NTE or on brain or diaphragm phenylvalerate hydrolases. At the same time, diaphragm AChE was inhibited by 60% while brain AChE activity had increased by 15% of control. Mipafox was a potent inhibitor of AChE and NTE in vitro. Although ecothiopate was a highly potent anti-ChE in vitro, it had no inhibitory effect on NTE.
        
Title: Phenyl valerate and choline ester hydrolases in the platelets of human, hen, rat and mouse Husain K Ref: Hum Exp Toxicol, 13:157, 1994 : PubMed
1. The levels of phenyl valerate and choline ester hydrolases in the platelets of human and certain laboratory animals have been determined for comparison. 2. The activities of total phenyl valerate hydrolase (PVase), paraoxon insensitive phenyl valerate hydrolase (PI-PVase), paraoxon and mipafox resistant esterase (PMRE) and propionyl-cholinesterase (PChE) were maximal in hen followed by mouse, rat and human. 3. Neurotoxic esterase (NTE) and acetylcholinesterase (AChE) activities were concentrated in the platelets of hens followed by humans, rats and mice in order. 4. Maximum concentration of butyrylcholinesterase (BChE) was found in the platelets of hens followed by mice, humans and rats. 5. It is concluded that the normal levels of enzyme activities in the platelets of humans and various species of animals may help to evaluate the exposure risk to neurotoxic organophosphorous compounds.
        
Title: Partial characterization of neuropathy target esterase and related phenyl valerate esterases from bovine adrenal medulla Sogorb MA, Viniegra S, Reig JA, Vilanova E Ref: Journal of Biochemical Toxicology, 9:145, 1994 : PubMed
The mechanism by which organophosphorus-induced delayed polyneuropathy is induced relates to the specific inhibition and subsequent modification ("aging") of a protein known as neuropathy target esterase (NTE), operatively defined as paraoxon-resistant and mipafox-sensitive phenyl valerate (PV) esterase activity. This protein has fundamentally been investigated in hen brain, the latter being the habitually employed OPIDP study model. In the present article, a partial characterization is made of the NTE and other related PV esterases in the bovine adrenal medulla and brain; NTE sensitivity to the neurotoxic organophosphorus compound mipafox is investigated, and its subcellular distribution is studied. The NTE activity of the adrenal medulla was found to be the highest of those among the tissues studied to date (5000 +/- 1400 mU/g tissue; +/- SD, n = 12). This activity represented 93% of the PV esterase activity resistant to 40 microM paraoxon in the particulate fraction of the adrenal medulla and approximately 50% of total PV esterase activity. In the bovine brain, these proportions were 72 and 26%, respectively, i.e., similar to those described in hen brain. The mipafox inhibition curve of PV esterase activity resistant to 40 microM paraoxon in the particulate fraction of the adrenal medulla suggests that NTE activity fundamentally comprises a mipafox-sensitive component with an I50 of 6.39 microM at 30 minutes, which is similar to the value reported in hen brain. NTE activity in the bovine adrenal medulla is almost exclusively limited to the particulate fraction, the microsomal fraction, plasma membrane, and chromaffin granule-enriched fractions being the highest in terms of specific activity.
        
Title: Soluble and particulate organophosphorus neuropathy target esterase in brain and sciatic nerve of the hen, cat, rat, and chick Tormo N, Gimeno JR, Sogorb MA, Diaz-Alejo N, Vilanova E Ref: Journal of Neurochemistry, 61:2164, 1993 : PubMed
Considerable evidence exists suggesting that the so-called neuropathy target esterase (NTE) is involved in the mechanisms responsible for organophosphorus-induced delayed polyneuropathy (OPIDP). Earlier studies in the adult hen, the habitually employed experimental model in OPIDP, have shown that most NTE activity in the brain is centered in particulate fractions, whereas approximately 50% of this activity in the sciatic nerve is encountered in soluble form, with the rest being particulate NTE. In the present work, we have studied the particulate and soluble fractional distribution of paraoxon-resistant phenylvalerate esterase activity (B activity), paraoxon- and mipafox-resistant phenylvalerate esterase activity (C activity), and NTE activity (B-C) according to ultracentrifugation criteria (100,000 g for 1 h). To this effect, two sensitive (adult hen and cat) and two scarcely sensitive (rat and chick) models were used. In all four experimental models, the distribution pattern was qualitatively similar: B activity and total NTE were much greater in brain (900-2,300 nmol/min/g of tissue) than in sciatic nerve (50-100 nmol/min/g of tissue). The proportion of soluble NTE in brain was very low (< 2%), whereas its presence in sciatic nerve was substantial (30-50%). The NTE/B ratio in brain was high for the particulate fraction (> 60%) and low in the soluble fraction (7-30%); in sciatic nerve the ratio was about 50% in both fractions.
        
Title: Histochemical demonstration of neurotoxic esterase Koelle GB, Thampi NS, Han MS, Olajos EJ Ref: Journal of Histochemistry & Cytochemistry, 37:589, 1989 : PubMed
We developed a histochemical method for localizing neurotoxic esterase (NTE), defined as the phenylvalerate (PV)-hydrolyzing esterase that is resistant to 40 microM paraoxon (A) but inactivated by paraoxon plus 50 microM mipafox (B). NTE is considered to be the target enzyme in the production of organophosphorus ester-induced delayed neurotoxicity (OPIDN). Cryostat sections were incubated in a medium containing alpha-naphthyl valerate and 6-benzamido-4-methoxy-m-toluidine diazonium chloride (fast violet B) after treatment with the above-mentioned inhibitors, leading to formation of an aqueous insoluble precipitate at sites of enzymatic activity. NTE activity was estimated as staining detectable in A but not in B. In the central nervous system (CNS) of chicken, NTE appeared to be present primarily in the somata of most neurons, but at sites indistinguishable from those of the other inhibitor-resistant and -sensitive alpha-naphthyl valerate-hydrolyzing esterases. It could not be distinguished in the CNS of cat, probably because it constitutes less than 3% of the total PV-hydrolyzing activity in the CNS of that species.
Heat inactivation was studied at 45, 50, 55, and 60 degrees for all of the phenyl valerate hydrolases (PVase), including neurotoxic esterase (NTE) and inhibitor-resistant esterase (IRE), in homogenates of hen or rat brain or in preparations of hen brain microsomal membranes. Hen and rat brain homogenates were prepared in buffer (50 mM Tris/0.20 mM EDTA, pH 8.00, at 25 degrees). Hen brain microsomes were suspended either in buffer or in aqueous dimethyl sulfoxide (DMSO, 40%, w/v), or solubilized either in aqueous Triton X-100 (0.10%, w/v) or in 40% (w/v) DMSO. Enzyme activities were measured at 37 degrees using phenyl valerate as substrate. Each enzyme activity in all of the preparations exhibited biphasic heat inactivation kinetics. Apparent rate constants were calculated for the fast (kf) and slow (ks) reactions, along with the relative amounts of activity in each component (Af, As) expressed as percentages of the total activity. For a given preparation and temperature, respective values of kf or ks were similar for PVase, NTE, and IRE, with a mean kf/ks ratio of 52 across all preparations. Af and As were a function of temperature. Mean values of the apparent activation energies (Ea) for all activities and preparations were 44 and 25 kcal/mol for the fast and slow inactivation reactions respectively. These results indicate that all phenyl valerate hydrolases in hen and rat brain undergo a common heat-induced structural change leading to loss of enzymic activity.
        
Title: Neural microtubular and lysosomal phenyl valerate esterases and proteases in relation to organophosphate-induced delayed neurotoxicity Seifert J, Casida JE Ref: Comparative Biochemistry & Physiology C Pharmacol Toxicol, 78:271, 1984 : PubMed
At least three forms of phenyl valerate esterases are present in hen brain cytoplasmic microtubules (MT). Thermostability studies reveal two additional forms in brain homogenates of cow, mouse, pig, rabbit and rat. The distribution of these brain esterases is not related to the age of the hens or the susceptibility of the species to organophosphate (OP)-induced delayed neurotoxicity. MT phenyl valerate esterases are distinct enzymes from the MT-associated proteases degrading high-molecular weight MT-associated proteins (hmw MAPs). Hen brain and spinal cord lysosomes on in vitro incubation release phenyl valerate esterase(s) and hmw MAPs-protease(s). OP neurotoxicants act in vitro to stabilize rat but not hen brain lysosomes. In vivo studies with hen brain and spinal cord lysosomes indicate that OP-induced delayed neurotoxicity is not initiated by disruption of lysosomal stability.