Mammalian Carboxylesterase are able to generate transesterification products (fatty acid ethyl esters (FAEEs)) from fatty acyl-Coenzyme A (CoA) and ethanol. They can also hydrolyze the ester bound releasing the fatty acyl. FAEE are toxic and affect mitochondrial function
Our understanding of the detailed recognition and processing of clinically useful therapeutic agents has grown rapidly in recent years, and we are now able to begin to apply this knowledge to the rational treatment of disease. Mammalian carboxylesterases (CEs) are enzymes with broad substrate specificities that have key roles in the metabolism of a wide variety of clinical drugs, illicit narcotics and chemical nerve agents. Here, the functions, mechanism of action and structures of human CEs are reviewed, with the goal of understanding how these proteins are able to act in such a non-specific fashion, yet catalyze a remarkably specific chemical reaction. Current approaches to harness these enzymes as protein-based therapeutics for drug and chemical toxin clearance are described, as well as their uses for targeted chemotherapeutic prodrug activation. Also included is an outline of how selective CE inhibitors could be used as co-drugs to improve the efficacy of clinically approved agents.
        
Title: Purification, cloning, and expression of a human enzyme with acyl coenzyme A: cholesterol acyltransferase activity, which is identical to liver carboxylesterase Becker A, Bottcher A, Lackner KJ, Fehringer P, Notka F, Aslanidis C, Schmitz G Ref: Arterioscler Thromb, 14:1346, 1994 : PubMed
An enzyme with acyl coenzyme A:cholesterol acyltransferase (ACAT) activity was isolated from porcine liver, and sequences derived from trypsinized peptides indicated homology to liver carboxylesterase. By use of degenerate primers, human cDNA clones were identified, which were identical to human liver carboxylesterase. Expression of the full-length cDNA in Chinese hamster ovary (CHO) cells led to an approximately threefold increase in cellular ACAT activity. This was accompanied by an approximately 20-fold increase of cellular cholesteryl ester content. By light and electron microscopy, recombinant CHO cells contained numerous lipid droplets that were not present in control CHO cells. Expression of an antisense cDNA in HepG2 cells reduced cellular ACAT activity by 35% compared with control. To further investigate the role of the enzyme in cellular cholesterol homeostasis, regulation of the mRNA was investigated in 7-day cultured human mononuclear phagocytes (MNPs). When these cells were incubated in lipoprotein-deficient serum for 18 hours, the mRNA for ACAT/carboxylesterase was almost not detectable on Northern blots, whereas after incubation with acetylated low-density lipoproteins, a strong hybridization signal was obtained. This is evidence that the mRNA of ACAT/carboxylesterase is induced by cholesterol loading. It is concluded from the data presented that ACAT/carboxylesterase is relevant for cellular cholesterol esterification in vivo. The regulation in MNPs indicates that the enzyme is also involved in foam cell formation during early atherogenesis.