Naproxen is a propionic acid derivative and a non-steroidal anti-inflammatory drug (NSAID) with anti-inflammatory, antipyretic and analgesic activities. Naproxen inhibits the activity of the enzymes cyclo-oxygenase I and II, resulting in a decreased formation of precursors of prostaglandins and thromboxanes. The resulting decrease in prostaglandin synthesis is responsible for the therapeutic effects of naproxen. Naproxen also causes a decrease in the formation of thromboxane A2 synthesis, by thromboxane synthase, thereby inhibiting platelet aggregation. It is the product of hydrolysis of Pro-Drugs Naproxen-Methyl-Ester by Hormone-sensitive_lipase_like enzymes. Enantioselective esterification of naproxen by lipases is studied to produce pro-drug
Naproxen esterase (NP) from Bacillus subtilis Thai I-8 is a carboxylesterase that catalyzes the enantioselective hydrolysis of naproxenmethylester to produce S-naproxen (E>200). It is a homolog of CesA (98% sequence identity) and CesB (64% identity), both produced by B. subtilis strain 168. CesB can be used for the enantioselective hydrolysis of 1,2-O-isopropylideneglycerol (solketal) esters (E>200 for IPG-caprylate). Crystal structures of NP and CesB, determined to a resolution of 1.75A and 2.04A, respectively, showed that both proteins have a canonical alpha/beta hydrolase fold with an extra N-terminal helix stabilizing the cap subdomain. The active site in both enzymes is located in a deep hydrophobic groove and includes the catalytic triad residues Ser130, His274, and Glu245. A product analog, presumably 2-(2-hydroxyethoxy)acetic acid, was bound in the NP active site. The enzymes have different enantioselectivities, which previously were shown to result from only a few amino acid substitutions in the cap domain. Modeling of a substrate in the active site of NP allowed explaining the different enantioselectivities. In addition, Ala156 may be a determinant of enantioselectivity as well, since its side chain appears to interfere with the binding of certain R-enantiomers in the active site of NP. However, the exchange route for substrate and product between the active site and the solvent is not obvious from the structures. Flexibility of the cap domain might facilitate such exchange. Interestingly, both carboxylesterases show higher structural similarity to meta-cleavage compound (MCP) hydrolases than to other alpha/beta hydrolase fold esterases.
        
Title: Efficient production of (S)-naproxen with (R)-substrate recycling using an overexpressed carboxylesterase BsE-NP01 Liu X, Xu JH, Pan J, Zhao J Ref: Appl Biochem Biotechnol, 162:1574, 2010 : PubMed
An (S)-enantioselective esterase from Bacillus subtilis ECU0554, named BsE-NP01, has been cloned and over-expressed in a heterologous host Escherichia coli BL21. BsE-NP01 was shown to be a carboxylesterase with a molecular mass of about 32 kDa, and temperature and pH optima at 50 degrees C and 8.5, respectively. It could catalyze the selective hydrolysis of the (S)-enantiomer of racemic naproxen methyl ester, giving optically pure (S)-naproxen with 98% enantiomeric excess. A mechanic-grinding approach to substrate dispersion was also reported, which was considered to be an alternative to take the place of deleterious surfactants such as Tween-80, with improved performance of the hydrolysis reaction. Batch production of (S)-naproxen was repeatedly carried out in a solid-water biphasic system at 2-L scale, achieving an average total yield of about 85% after ten runs with complete recycling of (R)-substrate.
        
Title: Hydrolytic resolution of (R,S)-naproxen 2,2,2-trifluoroethyl thioester by Carica papaya lipase in water-saturated organic solvents Ng IS, Tsai SW Ref: Biotechnol Bioeng, 89:88, 2005 : PubMed
For the first time, the Carica papaya lipase (CPL) stored in crude papain is explored as a potential enantioselective biocatalyst for obtaining chiral acids from their racemic thioesters. Hydrolytic resolution of (R,S)-naproxen 2,2,2-trifluoroethyl thioester in water-saturated organic solvents is employed as a model system for studying the effects of temperature and solvents on lipase activity and enantioselectivity. An optimal temperature of 60 degrees C, based on the initial rate of (S)-thioester and a high enantiomeric ratio (i.e., E-value defined as the ratio of initial rates for both substrates) of >100 at 45 degrees C in isooctane, is obtained. Kinetic analysis, considering product inhibition and enzyme deactivation, is also performed, showing agreement between the experimental and best-fit conversions for (S)-thioester. A comparison of the kinetic and thermodynamic behaviors of CPL and Candida rugosa lipase (CRL) in isooctane and cyclohexane indicates that both lipases are very similar in terms of thermodynamic parameters DeltaDeltaH and DeltaDeltaS, initial rate of (S)-substrate, and E-value when (R,S)-naproxen 2,2,2-trifluoroethyl thioester or ester is employed as substrate.
        
7 lessTitle: Enhanced Production of (S)-2-arylpropionic Acids by Protein Engineering and Whole-Cell Catalysis Liu X, Zhao M, Fan X, Fu Y Ref: Front Bioeng Biotechnol, 9:697677, 2021 : PubMed
Esterases are important biocatalysts for chemical synthesis. Several bHSL family esterases have been used to prepare (S)-2-arylpropionic acids with stronger anti-inflammatory effects via kinetic resolution. Here, we presented the discovery of key residues that controlled the enantioselectivity of bHSL family esterases to ethyl 2-arylpropionates, through careful analysis of the structural information and molecular docking. A new bHSL family esterase, Est924, was identified as a promising catalyst for kinetic resolution of racemic ethyl 2-arylpropionates with slight (R)-stereopreference. Using Est924 as the starting enzyme, protein engineering was conducted at hotspots, and the substitution of A203 was proved to enhance the enantioselectivity. The stereopreference of the mutant M1 (A203W) was inverted to ethyl (S)-2-arylpropionates, and this stereopreference was further improved in variant M3 (I202F/A203W/G208F). In addition, the optimal variant, M3, was also suitable for the resolution of ibuprofen ethyl ester and ketoprofen ethyl ester, and their efficient (S)-isomers were synthesized. Next, the whole-cell catalyst harboring M3 was used to prepare (S)-ketoprofen. (S)-ketoprofen with 86%ee was produced by whole-cell catalyst with a single freeze-thaw cycle, and the cells could be reused for at least five cycles. Our results suggested that Est924 variants could kinetically resolve economically important racemates for industrial production and further offer the opportunity for the rational design of enzyme enantioselectivity. Moreover, it is an economical process to prepare optically pure (S)-ketoprofen and (S)-naproxen by using an engineered strain harboring M3 as the catalyst.
A novel esterase, EstD11, has been discovered in a hot spring metagenomic library. It is a thermophilic and thermostable esterase with an optimum temperature of 60C. A detailed substrate preference analysis of EstD11 was done using a library of chromogenic ester substrate that revealed the broad substrate specificity of EstD11 with significant measurable activity against 16 substrates with varied chain length, steric hindrance, aromaticity and flexibility of the linker between the carboxyl and the alcohol moiety of the ester. The tridimensional structures of EstD11 and the inactive mutant have been determined at atomic resolutions. Structural and bioinformatic analysis, confirm that EstD11 belongs to the family IV, the hormone-sensitive lipase (HSL) family, from the alpha/beta-hydrolase superfamily. The canonical alpha/beta-hydrolase domain is completed by a cap domain, composed by two subdomains that can unmask of the active site to allow the substrate to enter. Eight crystallographic complexes were solved with different substrates and reaction products that allowed identification of the hot-spots in the active site underlying the specificity of the protein. Crystallization and/or incubation of EstD11 at high temperature provided unique information on cap dynamics and a first glimpse of enzymatic activity in vivo. Very interestingly, we have discovered a unique Met zipper lining the active site and the cap domains that could be essential in pivotal aspects as thermo-stability and substrate promiscuity in EstD11
Naproxen esterase (NP) from Bacillus subtilis Thai I-8 is a carboxylesterase that catalyzes the enantioselective hydrolysis of naproxenmethylester to produce S-naproxen (E>200). It is a homolog of CesA (98% sequence identity) and CesB (64% identity), both produced by B. subtilis strain 168. CesB can be used for the enantioselective hydrolysis of 1,2-O-isopropylideneglycerol (solketal) esters (E>200 for IPG-caprylate). Crystal structures of NP and CesB, determined to a resolution of 1.75A and 2.04A, respectively, showed that both proteins have a canonical alpha/beta hydrolase fold with an extra N-terminal helix stabilizing the cap subdomain. The active site in both enzymes is located in a deep hydrophobic groove and includes the catalytic triad residues Ser130, His274, and Glu245. A product analog, presumably 2-(2-hydroxyethoxy)acetic acid, was bound in the NP active site. The enzymes have different enantioselectivities, which previously were shown to result from only a few amino acid substitutions in the cap domain. Modeling of a substrate in the active site of NP allowed explaining the different enantioselectivities. In addition, Ala156 may be a determinant of enantioselectivity as well, since its side chain appears to interfere with the binding of certain R-enantiomers in the active site of NP. However, the exchange route for substrate and product between the active site and the solvent is not obvious from the structures. Flexibility of the cap domain might facilitate such exchange. Interestingly, both carboxylesterases show higher structural similarity to meta-cleavage compound (MCP) hydrolases than to other alpha/beta hydrolase fold esterases.
        
Title: Residue Val237 is critical for the enantioselectivity of Penicillium expansum lipase Tang L, Su M, Chi L, Zhang J, Zhang H, Zhu L Ref: Biotechnol Lett, 36:633, 2014 : PubMed
The shape of the hydrophobic tunnel leading to the active site of Penicillium expansum lipase (PEL) was redesigned by single-point mutations, in order to better understand enzyme enantioselectivity towards naproxen. A variant with a valine-to-glycine substitution at residue 237 exhibited almost no enantioselectivity (E = 1.1) compared with that (E = 104) of wild-type PEL. The function of the residue, Val237, in the hydrophobic tunnel was further analyzed by site-directed mutagenesis. For each of these variants a significant decrease of enantioselectivity (E < 7) was observed compared with that of wild-type enzyme. Further docking result showed that Val237 plays the most important role in stabilizing the correct orientation of (R)-naproxen. Overall, these results indicate that the residue Val237 is the key amino acid residue maintaining the enantioselectivity of the lipase.
        
Title: Substitution of Val72 residue alters the enantioselectivity and activity of Penicillium expansum lipase Tang L, Su M, Zhu L, Chi L, Zhang J, Zhou Q Ref: World J Microbiol Biotechnol, 29:145, 2013 : PubMed
Error-prone PCR was used to create more active or enantioselective variants of Penicillium expansum lipase (PEL). A variant with a valine to glycine substitution at residue 72 in the lid structure exhibited higher activity and enantioselectivity than those of wild-type PEL. Site-directed saturation mutagenesis was used to explore the sequence-function relationship and the substitution of Val72 of P. expansum lipase changed both catalytic activity and enantioselectivity greatly. The variant V72A, displayed a highest enantioselectivity enhanced to about twofold for the resolution of (R, S)-naproxen (E value increased from 104 to 200.7 for wild-type PEL and V72A variant, respectively). In comparison to PEL, the variant V72A showed a remarkable increase in specific activity towards p-nitrophenyl palmitate (11- and 4-fold increase at 25 and 35 degrees C, respectively) whereas it had a decreased thermostability. The results suggest that the enantioselective variant V72A could be used for the production of pharmaceutical drugs such as enantiomerically pure (S)-naproxen and the residue Val 72 of P. expansum lipase plays a significant role in the enantioselectivity and activity of this enantioselective lipase.
        
Title: Immobilization of Candida rugosa lipase on glass beads for enantioselective hydrolysis of racemic naproxen methyl ester Yilmaz E, Can K, Sezgin M, Yilmaz M Ref: Bioresour Technol, 102:499, 2011 : PubMed
Candida rugosa lipase (CRL) was immobilized on glutaraldehyde-activated aminopropyl glass beads by using covalent binding method or sol-gel encapsulation procedure and improved considerably by fluoride-catalyzed hydrolysis of mixtures of RSi(OCH3)3 and Si(OCH3)4. The catalytic properties of the immobilized lipases were evaluated into model reactions, i.e. the hydrolysis of p-nitrophenylpalmitate (p-NPP). It has been observed that the percent activity yield of the encapsulated lipase was 166.9, which is 5.5 times higher than that of the covalently immobilized lipase. The enantioselective hydrolysis of racemic Naproxen methyl ester by immobilized lipase was studied in aqueous buffer solution/isooctane reaction system and it was noticed that particularly, the glass beads based encapsulated lipases had higher conversion and enantioselectivity compared to covalently immobilized lipase. In short, the study confirms an excellent enantioselectivity (E>400) for the encapsulated lipase with an ee value of 98% for S-Naproxen.
        
Title: Efficient production of (S)-naproxen with (R)-substrate recycling using an overexpressed carboxylesterase BsE-NP01 Liu X, Xu JH, Pan J, Zhao J Ref: Appl Biochem Biotechnol, 162:1574, 2010 : PubMed
An (S)-enantioselective esterase from Bacillus subtilis ECU0554, named BsE-NP01, has been cloned and over-expressed in a heterologous host Escherichia coli BL21. BsE-NP01 was shown to be a carboxylesterase with a molecular mass of about 32 kDa, and temperature and pH optima at 50 degrees C and 8.5, respectively. It could catalyze the selective hydrolysis of the (S)-enantiomer of racemic naproxen methyl ester, giving optically pure (S)-naproxen with 98% enantiomeric excess. A mechanic-grinding approach to substrate dispersion was also reported, which was considered to be an alternative to take the place of deleterious surfactants such as Tween-80, with improved performance of the hydrolysis reaction. Batch production of (S)-naproxen was repeatedly carried out in a solid-water biphasic system at 2-L scale, achieving an average total yield of about 85% after ten runs with complete recycling of (R)-substrate.
        
Title: Lipase-catalyzed esterification of (S)-naproxen ethyl ester in supercritical carbon dioxide Kwon CH, Lee JH, Kim SW, Kang JW Ref: J Microbiol Biotechnol, 19:1596, 2009 : PubMed
A lipase-catalyzed esterification reaction of (S)-naproxen ethyl ester by CALB (Candida antarctica lipase B) enzyme was performed in supercritical carbon dioxide. Experiments were performed in a high-pressure cell for 10 h at a stirring rate of 150 rpm over a temperature range of 313.15 to 333.15 K and a pressure range of 50 to 175 bar. The productivity of (S)-naproxen ethyl ester was compared with the result in ambient condition. The total reaction time and conversion yields of the catalyzed reaction in supercritical carbon dioxide were compared with those at ambient temperature and pressure. The experimental results show that the conversion and reaction rate were significantly improved at critical condition. The maximum conversion yield was 9.9% (216 h) at ambient condition and 68.9% (3 h) in supercritical state. The effects of varying amounts of enzyme and water were also examined and the optimum condition was found (7 g of enzyme and 2% water content).
        
Title: Hydrolytic resolution of (R,S)-naproxen 2,2,2-trifluoroethyl thioester by Carica papaya lipase in water-saturated organic solvents Ng IS, Tsai SW Ref: Biotechnol Bioeng, 89:88, 2005 : PubMed
For the first time, the Carica papaya lipase (CPL) stored in crude papain is explored as a potential enantioselective biocatalyst for obtaining chiral acids from their racemic thioesters. Hydrolytic resolution of (R,S)-naproxen 2,2,2-trifluoroethyl thioester in water-saturated organic solvents is employed as a model system for studying the effects of temperature and solvents on lipase activity and enantioselectivity. An optimal temperature of 60 degrees C, based on the initial rate of (S)-thioester and a high enantiomeric ratio (i.e., E-value defined as the ratio of initial rates for both substrates) of >100 at 45 degrees C in isooctane, is obtained. Kinetic analysis, considering product inhibition and enzyme deactivation, is also performed, showing agreement between the experimental and best-fit conversions for (S)-thioester. A comparison of the kinetic and thermodynamic behaviors of CPL and Candida rugosa lipase (CRL) in isooctane and cyclohexane indicates that both lipases are very similar in terms of thermodynamic parameters DeltaDeltaH and DeltaDeltaS, initial rate of (S)-substrate, and E-value when (R,S)-naproxen 2,2,2-trifluoroethyl thioester or ester is employed as substrate.
        
Title: Lipase-catalyzed naproxen methyl ester hydrolysis in water-saturated ionic liquid: significantly enhanced enantioselectivity and stability Xin JY, Zhao YJ, Shi YG, Xia CG, Li SB Ref: World J Microbiol Biotechnol, 21:193, 2005 : PubMed
The lipase selective hydrolysis of Naproxen methyl ester was explored in both water-saturated isooctane and water-saturated ionic liquid 1-butyl-3-methylimidazolium hexafluoro-phoshate ([bmim]PF6) to see any significant differences in terms of enantioselectivity and stability between two different classes of reaction media. It is shown that polar and hydrophobic of [bmim]PF6 made it an unearthly reaction medium for hydrolysis of Naproxen methyl ester. It not only decreases the equilibrium constant (K) and enhances the enantiomeric ratio (E), consequently improves the equilibrium conversion (CEq) of the hydrolysis reaction and enantiomeric excess of product (eep), but also maintains the lipase activity. Because the lipase would not dissolve in the 1-butyl-3-methylimidazolium hexafluoro-phoshate, it can be filtrated up from 1-butyl-3-methylimidazolium hexafluoro-phoshate and recycled for several runs. The stability of lipase was improved due to the higher solubility of methanol in 1-butyl-3-methylimidazolium hexafluoro-phoshate than in isooctane.