Esterases receive special attention because their wide distribution in biological systems and environments and their importance for physiology and chemical synthesis. The prediction of esterases substrate promiscuity level from sequence data and the molecular reasons why certain such enzymes are more promiscuous than others, remain to be elucidated. This limits the surveillance of the sequence space for esterases potentially leading to new versatile biocatalysts and new insights into their role in cellular function. Here we performed an extensive analysis of the substrate spectra of 145 phylogenetically and environmentally diverse microbial esterases, when tested with 96 diverse esters. We determined the primary factors shaping their substrate range by analyzing substrate range patterns in combination with structural analysis and protein-ligand simulations. We found a structural parameter that helps ranking (classifying) promiscuity level of esterases from sequence data at 94% accuracy. This parameter, the active site effective volume, exemplifies the topology of the catalytic environment by measuring the active site cavity volume corrected by the relative solvent accessible surface area (SASA) of the catalytic triad. Sequences encoding esterases with active site effective volumes (cavity volume/SASA) above a threshold show greater substrate spectra, which can be further extended in combination with phylogenetic data. This measure provides also a valuable tool for interrogating substrates capable of being converted. This measure, found to be transferred to phosphatases of the haloalkanoic acid dehalogenase superfamily and possibly other enzymatic systems, represents a powerful tool for low-cost bioprospecting for esterases with broad substrate ranges, in large scale sequence datasets.
        
Title: Characterization of LipN (Rv2970c) of Mycobacterium Tuberculosis H37Rv and its Probable Role in Xenobiotic Degradation Jadeja D, Dogra N, Arya S, Singh G, Kaur J Ref: Journal of Cellular Biochemistry, 117:390, 2016 : PubMed
LipN (Rv2970c) belongs to the Lip family of M. tuberculosis H37Rv and is homologous to the human Hormone Sensitive Lipase. The enzyme demonstrated preference for short carbon chain substrates with optimal activity at 45 degrees C/pH 8.0 and stability between pH 6.0-9.0. The specific activity of the enzyme was 217 U/mg protein with pNP-butyrate as substrate. It hydrolyzed tributyrin to di- and monobutyrin. The active-site residues of the enzyme were confirmed to be Ser216, Asp316, and His346. Tetrahydrolipstatin, RHC-80267 and N-bromosuccinimide inhibited LipN enzyme activity completely. Interestingly, Trp145, a non active-site residue, demonstrated functional role to retain enzyme activity. The enzyme was localized in cytosolic fraction of M. tuberculosis H37Rv. The enzyme was able to synthesize ester of butyric acid, methyl butyrate, in presence of methanol. LipN was able to hydrolyze 4-hydroxyphenylacetate to hydroquinone. The gene was not expressed in in-vitro growth conditions while the expression of rv2970c gene was observed post 6h of macrophage infection by M. tuberculosis H37Ra. Under individual in-vitro stress conditions, the gene was expressed during acidic stress condition only. These findings suggested that LipN is a cytosolic, acid inducible carboxylesterase with no positional specificity in demonstrating activity with short carbon chain substrates. It requires Trp145, a non active site residue, for it's enzyme activity. J. Cell. Biochem. 117: 390-401, 2016. (c) 2015 Wiley Periodicals, Inc.
        
Title: Hydrolysis by acetylcholinesterase. Apparent molal volumes and trimethyl and methyl subsites Hasan FB, Cohen SG, Cohen JB Ref: Journal of Biological Chemistry, 255:3898, 1980 : PubMed
Esterases receive special attention because their wide distribution in biological systems and environments and their importance for physiology and chemical synthesis. The prediction of esterases substrate promiscuity level from sequence data and the molecular reasons why certain such enzymes are more promiscuous than others, remain to be elucidated. This limits the surveillance of the sequence space for esterases potentially leading to new versatile biocatalysts and new insights into their role in cellular function. Here we performed an extensive analysis of the substrate spectra of 145 phylogenetically and environmentally diverse microbial esterases, when tested with 96 diverse esters. We determined the primary factors shaping their substrate range by analyzing substrate range patterns in combination with structural analysis and protein-ligand simulations. We found a structural parameter that helps ranking (classifying) promiscuity level of esterases from sequence data at 94% accuracy. This parameter, the active site effective volume, exemplifies the topology of the catalytic environment by measuring the active site cavity volume corrected by the relative solvent accessible surface area (SASA) of the catalytic triad. Sequences encoding esterases with active site effective volumes (cavity volume/SASA) above a threshold show greater substrate spectra, which can be further extended in combination with phylogenetic data. This measure provides also a valuable tool for interrogating substrates capable of being converted. This measure, found to be transferred to phosphatases of the haloalkanoic acid dehalogenase superfamily and possibly other enzymatic systems, represents a powerful tool for low-cost bioprospecting for esterases with broad substrate ranges, in large scale sequence datasets.
        
Title: Characterization of LipN (Rv2970c) of Mycobacterium Tuberculosis H37Rv and its Probable Role in Xenobiotic Degradation Jadeja D, Dogra N, Arya S, Singh G, Kaur J Ref: Journal of Cellular Biochemistry, 117:390, 2016 : PubMed
LipN (Rv2970c) belongs to the Lip family of M. tuberculosis H37Rv and is homologous to the human Hormone Sensitive Lipase. The enzyme demonstrated preference for short carbon chain substrates with optimal activity at 45 degrees C/pH 8.0 and stability between pH 6.0-9.0. The specific activity of the enzyme was 217 U/mg protein with pNP-butyrate as substrate. It hydrolyzed tributyrin to di- and monobutyrin. The active-site residues of the enzyme were confirmed to be Ser216, Asp316, and His346. Tetrahydrolipstatin, RHC-80267 and N-bromosuccinimide inhibited LipN enzyme activity completely. Interestingly, Trp145, a non active-site residue, demonstrated functional role to retain enzyme activity. The enzyme was localized in cytosolic fraction of M. tuberculosis H37Rv. The enzyme was able to synthesize ester of butyric acid, methyl butyrate, in presence of methanol. LipN was able to hydrolyze 4-hydroxyphenylacetate to hydroquinone. The gene was not expressed in in-vitro growth conditions while the expression of rv2970c gene was observed post 6h of macrophage infection by M. tuberculosis H37Ra. Under individual in-vitro stress conditions, the gene was expressed during acidic stress condition only. These findings suggested that LipN is a cytosolic, acid inducible carboxylesterase with no positional specificity in demonstrating activity with short carbon chain substrates. It requires Trp145, a non active site residue, for it's enzyme activity. J. Cell. Biochem. 117: 390-401, 2016. (c) 2015 Wiley Periodicals, Inc.
Pig liver esterase (PLE) is probably the most important carboxyl esterase in organic synthesis and is commercially obtained by extraction of the animal tissue. However, problems occur in its application due to the presence of several isoenzymes (alpha-, beta- and gamma-PLE). The functional expression of the gamma-isoenzyme was already shown and differences in the enantioselectivity compared to the commercial preparations were confirmed. The amino acid and nucleotide sequences of the alpha- and beta-PLE are still unknown. In this work, putative sequences of the alpha-isoenzyme were identified from a commercial PLE preparation by 2D gel electrophoresis, digestion with proteases and analysis using Matrix-assisted laser desorption/ionization-time of flight (TOF) and electrospray ionisation quadrupole-TOF mass spectrometry. Based on these results, three amino acid exchanges were introduced into the gene encoding gamma-rPLE by site-directed mutagenesis, and the proteins were expressed in E. coli Origami (DE3). The produced PLE mutants were characterised with respect to their substrate specificity and enantioselectivity. No significant differences in the activity towards methyl butyrate were found, but several variants showed substantially enhanced enantioselectivity in the resolution of (R,S)-1-phenyl-2-butyl acetate with E = 100 for the best mutant V236P/A237G.
        
Title: Hydrolysis by acetylcholinesterase. Apparent molal volumes and trimethyl and methyl subsites Hasan FB, Cohen SG, Cohen JB Ref: Journal of Biological Chemistry, 255:3898, 1980 : PubMed