An ester prodrug of a metabotropic glutamate receptor 2/3 agonist with improved oral bioavailability. Its besylate is currently under development for the treatment of schizophrenia(Development code: TS-134).
Title: Bottom-up physiologically based pharmacokinetic modeling for predicting the human pharmacokinetic profiles of the ester prodrug MGS0274 and its active metabolite MGS0008, a metabotropic glutamate 2/3 receptor agonist Ochi M, Kinoshita K, Yamaguchi JI, Endo H Ref: Xenobiotica, :1, 2022 : PubMed
1. For ester prodrugs that are used to improve the gastrointestinal absorption of highly hydrophilic, pharmacologically active substances, it is challenging to predict the human pharmacokinetics (PK) of the prodrugs and their parent compounds using only preclinical data.2. This research was aimed at constructing a PBPK model for predicting the human PK of the ester prodrug MGS0274 and its parent compound MGS0008 after a single oral administration of MGS0274 besylate.3. First, we identified carboxylesterase 1 (CES1) as the major enzyme involved in the hydrolysis of MGS0274. Second, we constructed a new compartment model to estimate the passive diffusion clearance (CL(pd)) of MGS0008, a critical parameter for predicting the PK of highly hydrophilic compounds, based on in vivo monkey PK data. Finally, we constructed a permeability-limited liver PBPK model incorporating the CL(pd) assumed to be the same in humans.4. We confirmed that our method reliably predicted the human PK and that the estimated CL(pd) was comparable to that calculated retrospectively using the PBPK model, suggesting that the methodology for estimating the CL(pd) was valid.5. Our proposed methodology is expected to be helpful for human PK prediction of ester prodrugs hydrolyzed by CES1 and their hydrophilic parent compounds even during the preclinical phase.
We previously reported that MGS0008 is a selective group II metabotropic glutamate receptor (mGlu2/3 receptor) agonist that is effective in animal models of schizophrenia. MGS0008 is a highly hydrophilic glutamate analog and is therefore expected to show low oral bioavailability in humans. To improve the oral bioavailability of MGS0008, ester prodrugs of MGS0008 were synthesized and their usefulness was evaluated. Among the prodrugs, the l-menthol-ester prodrug 4h demonstrated preferable lipophilicity, good chemical stability, and a high conversion rate to MGS0008 in human and monkey liver microsomes. A pharmacokinetic study in monkeys revealed that the oral bioavailability of MGS0008 after oral dosing of compound 4h was approximately 15-fold higher than that after oral dosing of MGS0008. Based on these findings, a diastereomer of compound 4h (compound 4j, or MGS0274), was selected as a candidate for clinical drug development, and its besylate is currently under development for the treatment of schizophrenia (Development code: TS-134).
AIMS: The safety and pharmacokinetics of single and multiple doses of a novel mGlu(2/3) receptor agonist prodrug, MGS0274 besylate (TS-134), were investigated in healthy subjects. METHODS: Phase 1 single-ascending dose (5-20 mg) and multiple-ascending dose titration (5-80 mg) studies were conducted in healthy male and female subjects. Both studies were randomized, double-blinded and placebo-controlled. In one cohort of single-ascending dose study (10 mg), concentrations of MGS0008, the active compound, in the cerebrospinal fluid (CSF) were measured for up to 24 hours postdose. RESULTS: Following single and multiple oral administrations, MGS0274 was rapidly absorbed and extensively converted into MGS0008, which reached a maximum concentration (C(max) ) in plasma within 4 hours postdose and declined with a terminal half-life (t(1/2) ) of around 10 hours. Plasma exposure to MGS0274 was minimal, accounting for approximately 3% of the area under the concentration-time curve (AUC) of MGS0008. Plasma C(max) and AUC of MGS0008 at steady state increased dose proportionally (5-80 mg). MGS0008 penetrated into CSF, with a CSF-to-plasma C(max) ratio of 3.66%, and was eliminated with a t(1/2) of approximately 16 hours. The most frequent treatment-emergent adverse events observed following single and multiple oral administration included headache, nausea, somnolence, dizziness and vomiting. CONCLUSION: TS-134 is orally bioavailable in humans and converts rapidly and extensively to MGS0008, which exhibits good CSF penetration. Orally administered TS-134 was safe and generally well-tolerated; hence, TS-134 is a promising candidate for further clinical development for the treatment of disorders in which glutamatergic abnormalities are involved, such as schizophrenia.