1 moreTitle: Excellent Degradation Performance of a Versatile Phthalic Acid Esters-Degrading Bacterium and Catalytic Mechanism of Monoalkyl Phthalate Hydrolase Fan S, Wang J, Yan Y, Jia Y Ref: Int J Mol Sci, 19:, 2018 : PubMed
Despites lots of characterized microorganisms that are capable of degrading phthalic acid esters (PAEs), there are few isolated strains with high activity towards PAEs under a broad range of environmental conditions. In this study, Gordonia sp. YC-JH1 had advantages over its counterparts in terms of di(2-ethylhexyl) phthalate (DEHP) degradation performance. It possessed an excellent degradation ability in the range of 20(-)50 degrees C, pH 5.0(-)12.0, or 0(-)8% NaCl with the optimal degradation condition 40 degrees C and pH 10.0. Therefore, strain YC-JH1 appeared suitable for bioremediation application at various conditions. Metabolites analysis revealed that DEHP was sequentially hydrolyzed by strain YC-JH1 to mono(2-ethylhexyl) phthalate (MEHP) and phthalic acid (PA). The hydrolase MphG1 from strain YC-JH1 hydrolyzed monoethyl phthalate (MEP), mono-n-butyl phthalate (MBP), mono-n-hexyl phthalate (MHP), and MEHP to PA. According to molecular docking and molecular dynamics simulation between MphG1 and monoalkyl phthalates (MAPs), some key residues were detected, including the catalytic triad (S125-H291-D259) and the residues R126 and F54 potentially binding substrates. The mutation of these residues accounted for the reduced activity. Together, the mechanism of MphG1 catalyzing MAPs was elucidated, and would shed insights into catalytic mechanism of more hydrolases.
        
Title: Mono-2-ethylhexyl phthalate inhibits human extravillous trophoblast invasion via the PPARgamma pathway Gao F, Hu W, Li Y, Shen H, Hu J Ref: Toxicol Appl Pharmacol, 327:23, 2017 : PubMed
Concerns over the adverse reproductive outcomes in human have been raised, more evidence including the underlying mechanism are required. Since extravillous trophoblast (EVT) invasion is an important physiological step during early development, the effects of mono-2-ethylhexyl phthalate (MEHP), the bioactive metabolite of DEHP, on EVT invasion were investigated using Matrigel-coated transwell chambers and cell line HTR-8/SVneo. In the transwell-based invasive assay, MEHP exposure inhibited EVT invasion as judged by decreased invasion index. Further analysis showed that MEHP exposure significantly inhibited the activity of matrix metalloproteinase-9 (MMP-9), which is an important positive regulator of EVT invasion. Meanwhile, the protein levels of tissue inhibitor matrix metalloproteinase-1 (TIMP-1), one key negative regulator of EVT invasion, were upregulated by MEHP treatment. Finally, inactivation of PPARgamma pathway by either PPARgamma inhibitors or PPARgamma shRNA knockdown rescued the MEHP-induced inhibited invasion of HTR-8/SVneo cells, which is accompanied by the recovery of inhibited MMP-9 expression. The present study provides the evidence that MEHP exposure inhibits trophoblast invasion via PPARgamma at concentrations comparable to those found in humans, which provides an insight in understanding the mechanisms of DEHP-associated early pregnancy loss.
        
Title: Re-characterization of mono-2-ethylhexyl phthalate hydrolase belonging to the serine hydrolase family Iwata M, Imaoka T, Nishiyama T, Fujii T Ref: J Biosci Bioeng, 122:140, 2016 : PubMed
A novel bacterium assimilating di-2-ethylhexyl phthalate as a sole carbon source was isolated, and identified as a Rhodococcus species and the strain was named EG-5. The strain has a mono-2-ethylhexyl phthalate (MEHP) hydrolase (EG-5 MehpH), which exhibits some different enzymatic features when compared with the previously reported MEHP hydrolase (P8219 MehpH) from Gordonia sp. These differences include different pH optimum activity, maximal reaction temperature and heat stability. The Km and Vmax values of EG-5 MehpH were significantly higher than those of P8219 MehpH. The primary structure of EG-5 MehpH showed the highest sequence identity to that of P8219 MehpH (39%) among hydrolases. The phylogenetic tree suggested that EG-5 MehpH and P8219 MehpH were categorized in different groups of the novel MEHP hydrolase family. Mutation of a conserved R(109) residue of EG-5 MehpH to a hydrophobic residue resulted in a dramatic reduction in the Vmax value towards MEHP without affecting the Km value. These results indicate that this residue may neutralize the negative charge of a carboxylate anion of MEHP, and thus inhibit the catalytic nucleophile from attacking the ester bond. In other words, the R residue blocks inhibition from the carboxylate anion of MEHP. Recently, registered hypothetical proteins exhibiting 98% or 99% identities for EG-5 MehpH or for P8219 MehpH were found from some pathogens belonging to Actinomycetes. The protein may have other activities besides MEHP hydrolysis and function in other physiological reactions in some Actinomycetes.
        
1 lessTitle: Excellent Degradation Performance of a Versatile Phthalic Acid Esters-Degrading Bacterium and Catalytic Mechanism of Monoalkyl Phthalate Hydrolase Fan S, Wang J, Yan Y, Jia Y Ref: Int J Mol Sci, 19:, 2018 : PubMed
Despites lots of characterized microorganisms that are capable of degrading phthalic acid esters (PAEs), there are few isolated strains with high activity towards PAEs under a broad range of environmental conditions. In this study, Gordonia sp. YC-JH1 had advantages over its counterparts in terms of di(2-ethylhexyl) phthalate (DEHP) degradation performance. It possessed an excellent degradation ability in the range of 20(-)50 degrees C, pH 5.0(-)12.0, or 0(-)8% NaCl with the optimal degradation condition 40 degrees C and pH 10.0. Therefore, strain YC-JH1 appeared suitable for bioremediation application at various conditions. Metabolites analysis revealed that DEHP was sequentially hydrolyzed by strain YC-JH1 to mono(2-ethylhexyl) phthalate (MEHP) and phthalic acid (PA). The hydrolase MphG1 from strain YC-JH1 hydrolyzed monoethyl phthalate (MEP), mono-n-butyl phthalate (MBP), mono-n-hexyl phthalate (MHP), and MEHP to PA. According to molecular docking and molecular dynamics simulation between MphG1 and monoalkyl phthalates (MAPs), some key residues were detected, including the catalytic triad (S125-H291-D259) and the residues R126 and F54 potentially binding substrates. The mutation of these residues accounted for the reduced activity. Together, the mechanism of MphG1 catalyzing MAPs was elucidated, and would shed insights into catalytic mechanism of more hydrolases.
        
Title: Mono-2-ethylhexyl phthalate inhibits human extravillous trophoblast invasion via the PPARgamma pathway Gao F, Hu W, Li Y, Shen H, Hu J Ref: Toxicol Appl Pharmacol, 327:23, 2017 : PubMed
Concerns over the adverse reproductive outcomes in human have been raised, more evidence including the underlying mechanism are required. Since extravillous trophoblast (EVT) invasion is an important physiological step during early development, the effects of mono-2-ethylhexyl phthalate (MEHP), the bioactive metabolite of DEHP, on EVT invasion were investigated using Matrigel-coated transwell chambers and cell line HTR-8/SVneo. In the transwell-based invasive assay, MEHP exposure inhibited EVT invasion as judged by decreased invasion index. Further analysis showed that MEHP exposure significantly inhibited the activity of matrix metalloproteinase-9 (MMP-9), which is an important positive regulator of EVT invasion. Meanwhile, the protein levels of tissue inhibitor matrix metalloproteinase-1 (TIMP-1), one key negative regulator of EVT invasion, were upregulated by MEHP treatment. Finally, inactivation of PPARgamma pathway by either PPARgamma inhibitors or PPARgamma shRNA knockdown rescued the MEHP-induced inhibited invasion of HTR-8/SVneo cells, which is accompanied by the recovery of inhibited MMP-9 expression. The present study provides the evidence that MEHP exposure inhibits trophoblast invasion via PPARgamma at concentrations comparable to those found in humans, which provides an insight in understanding the mechanisms of DEHP-associated early pregnancy loss.
        
Title: Biodegradation of phthalic acid esters (PAEs) and in silico structural characterization of mono-2-ethylhexyl phthalate (MEHP) hydrolase on the basis of close structural homolog Singh N, Dalal V, Mahto JK, Kumar P Ref: J Hazard Mater, 338:11, 2017 : PubMed
Three bacterial strains capable of degrading phthalates namely Pseudomonas sp. PKDM2, Pseudomonas sp. PKDE1 and Pseudomonas sp. PKDE2 were isolated and characterized for their degradative potential. These strains efficiently degraded 77.4%-84.4% of DMP, 75.0%-75.7% of DEP and 71.7%-74.7% of DEHP, initial amount of each phthalate is 500mgL(-1) of each phthalate, after 44h of incubation. GC-MS results reveal the tentative DEHP degradation pathway, where hydrolases mediate the breakdown of DEHP to phthalic acid (PA) via an intermediate MEHP. MEHP hydrolase is a serine hydrolase which is involved in the reduction of the MEHP to PA. The predicted 3D model of MEHP hydrolase from Pseudomonas mosselii was docked with phthalate monoesters (PMEs) such as MEHP, mono-n-hexyl phthalate (MHP), mono-n-butyl phthalate (MBP) and mono-n-ethyl phthalate (MEP), respectively. Docking results show the distance between the carbonyl carbon of respective phthalate monoester and the hydroxyl group of catalytic serine lies in the range of 2.9 to 3.3A, which is similar to the ES complex of other serine hydrolases. This structural study highlights the interaction and the role of catalytic residues of MEHP hydrolase involved in the biodegradation of PMEs to phthalate.
        
Title: Re-characterization of mono-2-ethylhexyl phthalate hydrolase belonging to the serine hydrolase family Iwata M, Imaoka T, Nishiyama T, Fujii T Ref: J Biosci Bioeng, 122:140, 2016 : PubMed
A novel bacterium assimilating di-2-ethylhexyl phthalate as a sole carbon source was isolated, and identified as a Rhodococcus species and the strain was named EG-5. The strain has a mono-2-ethylhexyl phthalate (MEHP) hydrolase (EG-5 MehpH), which exhibits some different enzymatic features when compared with the previously reported MEHP hydrolase (P8219 MehpH) from Gordonia sp. These differences include different pH optimum activity, maximal reaction temperature and heat stability. The Km and Vmax values of EG-5 MehpH were significantly higher than those of P8219 MehpH. The primary structure of EG-5 MehpH showed the highest sequence identity to that of P8219 MehpH (39%) among hydrolases. The phylogenetic tree suggested that EG-5 MehpH and P8219 MehpH were categorized in different groups of the novel MEHP hydrolase family. Mutation of a conserved R(109) residue of EG-5 MehpH to a hydrophobic residue resulted in a dramatic reduction in the Vmax value towards MEHP without affecting the Km value. These results indicate that this residue may neutralize the negative charge of a carboxylate anion of MEHP, and thus inhibit the catalytic nucleophile from attacking the ester bond. In other words, the R residue blocks inhibition from the carboxylate anion of MEHP. Recently, registered hypothetical proteins exhibiting 98% or 99% identities for EG-5 MehpH or for P8219 MehpH were found from some pathogens belonging to Actinomycetes. The protein may have other activities besides MEHP hydrolysis and function in other physiological reactions in some Actinomycetes.