Karrikins (KAR) are butenolide molecules produced during wildfires in smoke and deposited on soil surface. They are absorbed by seeds and activate germination. Strigolactones (SL) are different butenolide plant hormones with tricyclic lactone, that influence root branching leaf shape and senescence. KAI2 and D14 are paralogous alpha/beta hydrolase receptors respectively for KARS and SLs they belong to the RsbQ-like family. KAI2 (KARRIKIN-INSENSITVE-2) and D14 (DWARF14) are both receptors and enzymes.KAR1 showed potent germination activity (<1 nM) with the key bioassayspecies: Grand Rapids lettuce seed (Lactuca sativa cv) and smoke-responsive Australian (Conostylis aculeata, Stylidium affine), South African (Syncarpha vestita) and North American species (Nicotiana attenuata, Emmenanthe penduliflora)
Karrikins are a chemically defined family of plant growth regulators discovered in smoke from burning plant material. Karrikins are potent in breaking dormancy of seeds of many species adapted to environments that regularly experience fire and smoke. The recent discovery that karrikins trigger seed germination and control seedling growth in taxa that would rarely experience fire indicates that their significance could extend far beyond fire ecology. This is exemplified by new studies showing that seeds of Arabidopsis thaliana respond sensitively and specifically to karrikins in smoke. These exciting discoveries might be explained if karrikins are produced in the environment by processes other than fire,
such as by chemical or microbial degradation of vegetation in response to disturbance of the soil or removal of the plant canopy. Another hypothesis is that plants contain endogenous karrikins that function naturally in the control of seed germination and that species from fire-prone habitats have evolved to respond also to exogenous karrikins. A variant on this hypothesis is that karrikins mimic
endogenous plant hormones such as terpenoids that control seed germination. The evidence for these hypotheses is discussed, but whatever the explanation karrikins are now firmly established as an important family of naturally occurring plant growth regulators.
        
Title: Identification of alkyl substituted 2H-furo[2,3-c]pyran-2-ones as germination stimulants present in smoke Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD Ref: Journal of Agricultural and Food Chemistry, 57:9475, 2009 : PubMed
The butenolide, 3-methyl-2H-furo[2,3-c]pyran-2-one (1), is a major compound in smoke responsible for promoting the seed germination of a wide range of plant species. We now report the structure of five alkyl substituted variants of 1 that are also present in smoke. The concentrations of these analogues, as well as that of 1, in a typical smoke-water solution have been determined using high-performance liquid chromatography (HPLC) purification followed by gas chromatography-mass spectrometry (GC-MS) analysis. The analogue, 3,5-dimethyl-2H-furo[2,3-c]pyran-2-one (3), was identified at levels that indicate that it is a contributor to the overall germination-promoting activity of crude smoke extracts.
Exposure of seeds to aerosol smoke or crude smoke extracts stimulates the germination of a number of fire-dependent and fire-independent plant species. We now report the identity of a germination-promoting compound present in plant- and cellulose-derived smoke. The structure of this compound, deduced from spectroscopic analysis and confirmed by synthesis, was shown to be that of the butenolide 3-methyl-2H-furo[2,3-c]pyran-2-one (1). Here we show that 1 promotes germination of a number of plant species at a level similar to that observed with plant-derived smoke water.
        
22 lessTitle: Smoke and Hormone Mirrors: Action and Evolution of Karrikin and Strigolactone Signaling Morffy N, Faure L, Nelson DC Ref: Trends Genet, 32:176, 2016 : PubMed
Karrikins and strigolactones are two classes of butenolide molecules that have diverse effects on plant growth. Karrikins are found in smoke and strigolactones are plant hormones, yet both molecules are likely recognized through highly similar signaling mechanisms. Here we review the most recent discoveries of karrikin and strigolactone perception and signal transduction. Two paralogous alpha/beta hydrolases, KAI2 and D14, are respectively karrikin and strigolactone receptors. D14 acts with an F-box protein, MAX2, to target SMXL/D53 family proteins for proteasomal degradation, and genetic data suggest that KAI2 acts similarly. There are striking parallels in the signaling mechanisms of karrikins, strigolactones, and other plant hormones, including auxins, jasmonates, and gibberellins. Recent investigations of host perception in parasitic plants have demonstrated that strigolactone recognition can evolve following gene duplication of KAI2.
        
Title: Functional redundancy in the control of seedling growth by the karrikin signaling pathway Stanga JP, Morffy N, Nelson DC Ref: Planta, 243:1397, 2016 : PubMed
MAIN CONCLUSION: SMAX1 and SMXL2 control seedling growth, demonstrating functional redundancy within a gene family that mediates karrikin and strigolactone responses. Strigolactones (SLs) are plant hormones with butenolide moieties that control diverse aspects of plant growth, including shoot branching. Karrikins (KARs) are butenolide molecules found in smoke that enhance seed germination and seedling photomorphogenesis. In Arabidopsis thaliana, SLs and KARs signal through the alpha/beta hydrolases D14 and KAI2, respectively. The F-box protein MAX2 is essential for both signaling pathways. SUPPRESSOR OF MAX2 1 (SMAX1) plays a prominent role in KAR-regulated growth downstream of MAX2, and SMAX1-LIKE genes SMXL6, SMXL7, and SMXL8 mediate SL responses. We previously found that smax1 loss-of-function mutants display constitutive KAR response phenotypes, including reduced seed dormancy and hypersensitive growth responses to light in seedlings. However, smax1 seedlings remain slightly responsive to KARs, suggesting that there is functional redundancy in karrikin signaling. SMXL2 is a strong candidate for this redundancy because it is the closest paralog of SMAX1, and because its expression is regulated by KAR signaling. Here, we present evidence that SMXL2 controls hypocotyl growth and expression of the KAR/SL transcriptional markers KUF1, IAA1, and DLK2 redundantly with SMAX1. Hypocotyl growth in the smax1 smxl2 double mutant is insensitive to KAR and SL, and etiolated smax1 smxl2 seedlings have reduced hypocotyl elongation. However, smxl2 has little or no effect on seed germination, leaf shape, or petiole orientation, which appear to be predominantly controlled by SMAX1. Neither SMAX1 nor SMXL2 affect axillary branching or inflorescence height, traits that are under SL control. These data support the model that karrikin and strigolactone responses are mediated by distinct subclades of the SMXL family, and further the case for parallel butenolide signaling pathways that evolved through ancient KAI2 and SMXL duplications.
The perception of two plant germination inducers, karrikins and strigolactones, are mediated by the proteins KAI2 and D14. Recently, KAI2-type proteins from parasitic weeds, which are possibly related to seed germination induced by strigolactone, have been classified into three clades characterized by different responses to karrikin/strigolactone. Here we characterized a karrikin-binding protein in Striga (ShKAI2iB) that belongs to intermediate-evolving KAI2 and provided the structural bases for its karrikin-binding specificity. Binding assays showed that ShKAI2iB bound karrikins but not strigolactone, differing from other KAI2 and D14. The crystal structures of ShKAI2iB and ShKAI2iB-karrikin complex revealed obvious structural differences in a helix located at the entry of its ligand-binding cavity. This results in a smaller closed pocket, which is also the major cause of ShKAI2iB's specificity of binding karrikin. Our structural study also revealed that a few non-conserved amino acids led to the distinct ligand-binding profile of ShKAI2iB, suggesting that the evolution of KAI2 resulted in its diverse functions.
        
Title: Evidence that KARRIKIN-INSENSITIVE2 (KAI2) Receptors may Perceive an Unknown Signal that is not Karrikin or Strigolactone Conn CE, Nelson DC Ref: Front Plant Sci, 6:1219, 2015 : PubMed
The alpha/beta-hydrolases KAI2 and D14 are paralogous receptors for karrikins and strigolactones, two classes of plant growth regulators with butenolide moieties. KAI2 and D14 act in parallel signaling pathways that share a requirement for the F-box protein MAX2, but produce distinct growth responses by regulating different members of the SMAX1-LIKE/D53 family. kai2 and max2 mutants share seed germination, seedling growth, leaf shape, and petiole orientation phenotypes that are not found in d14 or SL-deficient mutants. This implies that KAI2 recognizes an unknown, endogenous signal, herein termed KAI2 ligand (KL). Recent studies of ligand-specificity among KAI2 paralogs in basal land plants and root parasitic plants suggest that karrikin and strigolactone perception may be evolutionary adaptations of KL receptors. Here we demonstrate that evolutionarily conserved KAI2c genes from two parasite species rescue multiple phenotypes of the Arabidopsis kai2 mutant, unlike karrikin-, and strigolactone-specific KAI2 paralogs. We hypothesize that KAI2c proteins recognize KL, which could be an undiscovered hormone.
In terrestrial ecosystems, plants take up phosphate predominantly via association with arbuscular mycorrhizal fungi (AMF). We identified loss of responsiveness to AMF in the rice (Oryza sativa) mutant hebiba, reflected by the absence of physical contact and of characteristic transcriptional responses to fungal signals. Among the 26 genes deleted in hebiba, DWARF 14 LIKE is, the one responsible for loss of symbiosis . It encodes an alpha/beta-fold hydrolase, that is a component of an intracellular receptor complex involved in the detection of the smoke compound karrikin. Our finding reveals an unexpected plant recognition strategy for AMF and a previously unknown signaling link between symbiosis and plant development.
        
Title: Substrate-Induced Degradation of the alpha/beta-Fold Hydrolase KARRIKIN INSENSITIVE2 Requires a Functional Catalytic Triad but Is Independent of MAX2 Waters MT, Scaffidi A, Flematti GR, Smith SM Ref: Mol Plant, 8:814, 2015 : PubMed
Title: A Selaginella moellendorffii Ortholog of KARRIKIN INSENSITIVE2 Functions in Arabidopsis Development but Cannot Mediate Responses to Karrikins or Strigolactones Waters MT, Scaffidi A, Moulin SL, Sun YK, Flematti GR, Smith SM Ref: Plant Cell, 27:1925, 2015 : PubMed
In Arabidopsis thaliana, the alpha/beta-fold hydrolase KARRIKIN INSENSITIVE2 (KAI2) is essential for normal seed germination, seedling development, and leaf morphogenesis, as well as for responses to karrikins. KAI2 is a paralog of DWARF14 (D14), the proposed strigolactone receptor, but the evolutionary timing of functional divergence between the KAI2 and D14 clades has not been established. By swapping gene promoters, we show that Arabidopsis KAI2 and D14 proteins are functionally distinct. We show that the catalytic serine of KAI2 is essential for function in plants and for biochemical activity in vitro. We identified two KAI2 homologs from Selaginella moellendorffii and two from Marchantia polymorpha. One from each species could hydrolyze the strigolactone analog GR24 in vitro, but when tested for their ability to complement Arabidopsis d14 and kai2 mutants, neither of these homologs was effective. However, the second KAI2 homolog from S. moellendorffii was able to complement the seedling and leaf development phenotypes of Arabidopsis kai2. This homolog could not transduce signals from exogenous karrikins, strigolactone analogs, or carlactone, but its activity did depend on the conserved catalytic serine. We conclude that KAI2, and most likely the endogenous signal to which it responds, has been conserved since the divergence of lycophytes and angiosperm lineages, despite their major developmental and morphogenic differences.
        
Title: Signalling and responses to strigolactones and karrikins Smith SM, Li J Ref: Curr Opin Plant Biol, 21C:23, 2014 : PubMed
Strigolactone (SL) and karrikin (KAR) signalling control many aspects of plant growth and development through similar mechanisms employing related alpha/beta-fold hydrolase-receptors and a common F-box protein named MORE AXILARY BRANCHES2 (MAX2) in Arabidopsis or DWARF3 (D3) in rice. D3 mediates SL-dependent ubiquitination and proteolysis of DWARF53 (D53) protein, thought to be involved in the control of gene expression, while a related protein SUPPRESSOR OF MAX2-1 (SMAX1) is implicated in the response to KAR in Arabidopsis. Different members of the D53/SMAX1 multigene family likely mediate different responses in plant growth and development. Analysis of responses to SL or KAR has identified many genes regulated by these compounds. Crosstalk with other signalling systems including light, hormones and abiotic stress has also been identified. Here we critically analyse how to progress towards a clearer understanding of the targets and functions of the SL and KAR signalling systems.
Arabidopsis thaliana provides a powerful means to investigate the mode of action of karrikins, compounds produced during wildfires that stimulate germination of seeds of fire-following taxa. These studies have revealed close parallels between karrikin signalling and strigolactone signalling. The two perception systems employ similar mechanisms involving closely related alpha/beta-fold hydrolases (KAI2 and AtD14) and a common F-box protein (MAX2). However, karrikins and strigolactones may be distinguished from each other and elicit different responses. The karrikin response requires a newly discovered protein (SMAX1), a homologue of rice protein D53 that is required for the strigolactone response. Mutants defective in the response to karrikins have seeds with increased dormancy, altered seedling photomorphogenesis and modified leaf shape. As the karrikin and strigolactone response mechanisms are so similar, it is speculated that the endogenous signalling compound for the KAI2 system may be a specific strigolactone. However, new results show that the proposed endogenous signalling compound is not produced by the known strigolactone biosynthesis pathway via carlactone. Structural studies of KAI2 protein and its interaction with karrikins and strigolactone analogues provide some insight into possible protein-ligand interactions, but are hampered by lack of knowledge of the endogenous ligand. The KAI2 system appears to be present throughout angiosperms, implying a fundamentally important function in plant biology.
KARRIKIN INSENSITIVE 2 (KAI2) is an alpha/beta hydrolase involved in seed germination and seedling development. It is essential for plant responses to karrikins, a class of butenolide compounds derived from burnt plant material that are structurally similar to strigolactone plant hormones. The mechanistic basis for the function of KAI2 in plant development remains unclear. We have determined the crystal structure of Arabidopsis thaliana KAI2 in space groups P2(1) 2(1) 2(1) (a =63.57 A, b =66.26 A, c =78.25 A) and P2(1) (a =50.20 A, b =56.04 A, c =52.43 A, beta =116.12degre) to 1.55 and 2.11A respectively. The catalytic residues are positioned within a large hydrophobic pocket similar to that of DAD2, a protein required for strigolactone response in Petunia hybrida. KAI2 possesses a second solvent-accessible pocket, adjacent to the active site cavity, which offers the possibility of allosteric regulation. The structure of KAI2 is consistent with its designation as a serine hydrolase, as well as previous data implicating the protein in karrikin and strigolactone signalling.
        
Title: Smoke-derived karrikin perception by the alpha/beta-hydrolase KAI2 from Arabidopsis Guo Y, Zheng Z, La Clair JJ, Chory J, Noel JP Ref: Proc Natl Acad Sci U S A, 110:8284, 2013 : PubMed
Genetic studies in Arabidopsis implicate an alpha/beta-hydrolase, KARRIKIN-INSENSITIVE 2 (KAI2) as a receptor for karrikins, germination-promoting butenolide small molecules found in the smoke of burned plants. However, direct biochemical evidence for the interaction between KAI2 and karrikin and for the mechanism of downstream signaling by a KAI2-karrikin complex remain elusive. We report crystallographic analyses and ligand-binding experiments for KAI2 recognition of karrikins. The karrikin-1 (KAR1) ligand sits in the opening to the active site abutting a helical domain insert but distal from the canonical catalytic triad (Ser95-His246-Asp217) of alpha/beta-hydrolases, consistent with the lack of detectable hydrolytic activity by purified KAI2. The closest approach of KAR1 to Ser95-His246-Asp217 is 3.8 A from His246. Six aromatic side chains, including His246, encapsulate KAR1 through geometrically defined aromatic-aromatic interactions. KAR1 binding induces a conformational change in KAI2 at the active site entrance. A crevice of hydrophobic residues linking the polar edge of KAR1 and the helical domain insert suggests that KAI2-KAR1 creates a contiguous interface for binding signaling partners in a ligand-dependent manner.
Strigolactones (SLs) are plant hormones that inhibit shoot branching. DWARF14 (D14) inhibits rice tillering and is an SL receptor candidate in the branching inhibition pathway, whereas the close homologue DWARF14-LIKE (D14L) participates in the signaling pathway of karrikins (KARs), which are derived from burnt vegetation as smoke stimulants of seed germination. We provide the first evidence for direct binding of the bioactive SL analogue GR24 to D14. Isothermal titration calorimetry measurements show a D14-GR24 binding affinity in the sub-micromolar range. Similarly, bioactive KAR1 directly binds D14L in the micromolar range. The crystal structure of rice D14 shows a compact alpha-/beta-fold hydrolase domain forming a deep ligand-binding pocket capable of accommodating GR24. Insertion of four alpha-helices between beta6 strand and alphaD helix forms the helical cap of the pocket, although the pocket is open to the solvent. The pocket contains the conserved catalytic triad Ser-His-Asp aligned with the oxyanion hole, suggesting hydrolase activity. Although these structural characteristics are conserved in D14L, the D14L pocket is smaller than that of D14. The KAR-insensitive mutation kai2-1 is located at the prominent long beta6-alphaD1 loop, which is characteristic in D14 and D14L, but not in related alpha-/beta-fold hydrolases.
Karrikins are butenolides in smoke and char that stimulate seed germination. Karrikin action in Arabidopsis requires the F-box protein MAX2 and the alpha/beta-hydrolase KAI2, a paralogue of D14 that is required for perception of strigolactones (SL). SL response involves hydrolysis by D14, whereas karrikins bind to KAI2 without apparent hydrolysis. We discuss the current understanding of the mechanisms of karrikin perception and response. The usual function of KAI2 is unclear, but we hypothesise that the similarity between karrikins and the endogenous ligand for KAI2 made adaptation of some plants to karrikins possible.
        
Title: KAI2- and MAX2-Mediated Responses to Karrikins and Strigolactones Are Largely Independent of HY5 in Arabidopsis Seedlings Waters MT, Smith SM Ref: Mol Plant, 6:63, 2013 : PubMed
Karrikins are butenolide compounds released from burning vegetation that stimulate seed germination and enhance seedling photomorphogenesis. Strigolactones are structurally similar plant hormones that regulate shoot and root development, and promote the germination of parasitic weed seeds. In Arabidopsis, the F-box protein MAX2 is required for responses to karrikins and strigolactones, and the alpha/beta hydrolase KAI2 is necessary for responses to karrikins. Both MAX2 and KAI2 are essential for normal light-dependent seedling development. The bZIP transcription factor HY5 acts downstream of multiple photoreceptors and promotes photomorphogenesis, but its relationship with MAX2 and KAI2 in terms of seedling development and responses to karrikins and strigolactones is poorly defined. Here, we demonstrate that HY5 action is genetically separable from that of MAX2 and KAI2. While hy5 mutants have weak hypocotyl elongation responses to karrikins and the artificial strigolactone GR24, they have normal transcriptional responses, suggesting that HY5 is not involved in perception or action of karrikins or strigolactones. Furthermore, we show that overexpression of KAI2 is sufficient to enhance responses to both karrikins and GR24 in wild-type seedlings, and that KAI2 overexpression partially suppresses the hy5 long hypocotyl phenotype. These results suggest that KAI2 and MAX2 define a regulatory pathway that largely operates independently of HY5 to mediate seedling responses to abiotic signals such as smoke and light.
The signaling molecules strigolactone (SL) and karrikin are involved in seed germination, development of axillary meristems, senescence of leaves, and interactions with arbuscular mycorrhizal fungi. The signal transduction pathways for both SLs and karrikins require the same F-box protein (MAX2) and closely related alpha/beta hydrolase fold proteins (DAD2 and KAI2). The crystal structure of DAD2 has been solved revealing an alpha/beta hydrolase fold protein with an internal cavity capable of accommodating SLs. DAD2 responds to the SL analog GR24 by changing conformation and binding to MAX2 in a GR24 concentration-dependent manner. DAD2 can also catalyze hydrolysis of GR24. Structure activity relationships of analogs indicate that the butenolide ring common to both SLs and karrikins is essential for biological activity, but the remainder of the molecules can be significantly modified without loss of activity. The combination of data from the study of DAD2, KAI2, and chemical analogs of SLs and karrikins suggests a model for binding that requires nucleophilic attack by the active site serine of the hydrolase at the carbonyl atom of the butenolide ring. A conformational change occurs in the hydrolase that results in interaction with the F-box protein MAX2. Downstream signal transduction is then likely to occur via SCF (Skp-Cullin-F-box) complex-mediated ubiquitination of target proteins and their subsequent degradation. The role of the catalytic activity of the hydrolase is unclear but it may be integral in binding as well as possibly allowing the signal to be cleared from the receptor. The alpha/beta hydrolase fold family consists mostly of active enzymes, with a few notable exceptions. We suggest that DAD2 and KAI2 represent an intermediate stage where some catalytic activity is retained at the same time as a receptor role has evolved.
It is well known that burning of vegetation stimulates new plant growth and landscape regeneration. The discovery that char and smoke from such fires promote seed germination in many species indicates the presence of chemical stimulants. Nitrogen oxides stimulate seed germination, but their importance in post-fire germination has been questioned. Cyanohydrins have been recently identified in aqueous smoke solutions and shown to stimulate germination of some species through the slow release of cyanide. However, the most information is available for karrikins, a family of butenolides related to 3-methyl-2H-furo[2,3-c]pyran-2-one. Karrikins stimulate seed germination and influence seedling growth. They are active in species not normally associated with fire, and in Arabidopsis they require the F-box protein MAX2, which also controls responses to strigolactone hormones. We hypothesize that chemical similarity between karrikins and strigolactones provided the opportunity for plants to employ a common signal transduction pathway to respond to both types of compound, while tailoring specific developmental responses to these distinct environmental signals.
Karrikins and strigolactones are novel plant growth regulators that contain similar molecular features, but very little is known about how they elicit responses in plants. A tentative molecular mechanism has previously been proposed involving a Michael-type addition for both compounds. Through structure-activity studies with karrikins, we now propose an alternative mechanism for karrikin and strigolactone mode of action that involves hydrolysis of the butenolide ring.
Karrikins are butenolides derived from burnt vegetation that stimulate seed germination and enhance seedling responses to light. Strigolactones are endogenous butenolide hormones that regulate shoot and root architecture, and stimulate the branching of arbuscular mycorrhizal fungi. Thus, karrikins and strigolactones are structurally similar but physiologically distinct plant growth regulators. In Arabidopsis thaliana, responses to both classes of butenolides require the F-box protein MAX2, but it remains unclear how discrete responses to karrikins and strigolactones are achieved. In rice, the DWARF14 protein is required for strigolactone-dependent inhibition of shoot branching. Here, we show that the Arabidopsis DWARF14 orthologue, AtD14, is also necessary for normal strigolactone responses in seedlings and adult plants. However, the AtD14 paralogue KARRIKIN INSENSITIVE 2 (KAI2) is specifically required for responses to karrikins, and not to strigolactones. Phylogenetic analysis indicates that KAI2 is ancestral and that AtD14 functional specialisation has evolved subsequently. Atd14 and kai2 mutants exhibit distinct subsets of max2 phenotypes, and expression patterns of AtD14 and KAI2 are consistent with the capacity to respond to either strigolactones or karrikins at different stages of plant development. We propose that AtD14 and KAI2 define a class of proteins that permit the separate regulation of karrikin and strigolactone signalling by MAX2. Our results support the existence of an endogenous, butenolide-based signalling mechanism that is distinct from the strigolactone pathway, providing a molecular basis for the adaptive response of plants to smoke.
Smoke is an important abiotic cue for plant regeneration in postfire landscapes. Karrikins are a class of compounds discovered in smoke that promote seed germination and influence early development of many plants by an unknown mechanism. A genetic screen for karrikin-insensitive mutants in Arabidopsis thaliana revealed that karrikin signaling requires the F-box protein MAX2, which also mediates responses to the structurally-related strigolactone family of phytohormones. Karrikins and the synthetic strigolactone GR24 trigger similar effects on seed germination, seedling photomorphogenesis, and expression of a small set of genes during these developmental stages. Karrikins also repress MAX4 and IAA1 transcripts, which show negative feedback regulation by strigolactone. We demonstrate that all of these common responses are abolished in max2 mutants. Unlike strigolactones, however, karrikins do not inhibit shoot branching in Arabidopsis or pea, indicating that plants can distinguish between these signals. These results suggest that a MAX2-dependent signal transduction mechanism was adapted to mediate responses to two chemical cues with distinct roles in plant ecology and development.
Karrikins are a class of seed germination stimulants identified in smoke from wildfires. Microarray analysis of imbibed Arabidopsis thaliana seeds was performed to identify transcriptional responses to KAR(1) before germination. A small set of genes that are regulated by KAR(1), even when germination is prevented by the absence of gibberellin biosynthesis or light, were identified. Light-induced genes, putative HY5-binding targets, and ABRE-like promoter motifs were overrepresented among KAR(1)-up-regulated genes. KAR(1) transiently induced the light signal transduction transcription factor genes HY5 and HYH. Germination of afterripened Arabidopsis seed was triggered at lower fluences of red light when treated with KAR(1). Light-dependent cotyledon expansion and inhibition of hypocotyl elongation were enhanced in the presence of germination-active karrikins. HY5 is important for the Arabidopsis hypocotyl elongation, but not seed germination, response to karrikins. These results reveal a role for karrikins in priming light responses in the emerging seedling, and suggest that the influence of karrikins on postfire ecology may not be limited to germination recruitment.
Karrikins are a chemically defined family of plant growth regulators discovered in smoke from burning plant material. Karrikins are potent in breaking dormancy of seeds of many species adapted to environments that regularly experience fire and smoke. The recent discovery that karrikins trigger seed germination and control seedling growth in taxa that would rarely experience fire indicates that their significance could extend far beyond fire ecology. This is exemplified by new studies showing that seeds of Arabidopsis thaliana respond sensitively and specifically to karrikins in smoke. These exciting discoveries might be explained if karrikins are produced in the environment by processes other than fire,
such as by chemical or microbial degradation of vegetation in response to disturbance of the soil or removal of the plant canopy. Another hypothesis is that plants contain endogenous karrikins that function naturally in the control of seed germination and that species from fire-prone habitats have evolved to respond also to exogenous karrikins. A variant on this hypothesis is that karrikins mimic
endogenous plant hormones such as terpenoids that control seed germination. The evidence for these hypotheses is discussed, but whatever the explanation karrikins are now firmly established as an important family of naturally occurring plant growth regulators.
        
Title: Identification of alkyl substituted 2H-furo[2,3-c]pyran-2-ones as germination stimulants present in smoke Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD Ref: Journal of Agricultural and Food Chemistry, 57:9475, 2009 : PubMed
The butenolide, 3-methyl-2H-furo[2,3-c]pyran-2-one (1), is a major compound in smoke responsible for promoting the seed germination of a wide range of plant species. We now report the structure of five alkyl substituted variants of 1 that are also present in smoke. The concentrations of these analogues, as well as that of 1, in a typical smoke-water solution have been determined using high-performance liquid chromatography (HPLC) purification followed by gas chromatography-mass spectrometry (GC-MS) analysis. The analogue, 3,5-dimethyl-2H-furo[2,3-c]pyran-2-one (3), was identified at levels that indicate that it is a contributor to the overall germination-promoting activity of crude smoke extracts.
Discovery of the primary seed germination stimulant in smoke, 3-methyl-2H-furo[2,3-c]pyran-2-one (KAR1), has resulted in identification of a family of structurally related plant growth regulators, karrikins. KAR1 acts as a key germination trigger for many species from fire-prone, Mediterranean climates, but a molecular mechanism for this response remains unknown. We demonstrate that Arabidopsis (Arabidopsis thaliana), an ephemeral of the temperate northern hemisphere that has never, to our knowledge, been reported to be responsive to fire or smoke, rapidly and sensitively perceives karrikins. Thus, these signaling molecules may have greater significance among angiosperms than previously realized. Karrikins can trigger germination of primary dormant Arabidopsis seeds far more effectively than known phytohormones or the structurally related strigolactone GR-24. Natural variation and depth of seed dormancy affect the degree of KAR1 stimulation. Analysis of phytohormone mutant germination reveals suppression of KAR1 responses by abscisic acid and a requirement for gibberellin (GA) synthesis. The reduced germination of sleepy1 mutants is partially recovered by KAR1, which suggests that germination enhancement by karrikin is only partly DELLA dependent. While KAR1 has little effect on sensitivity to exogenous GA, it enhances expression of the GA biosynthetic genes GA3ox1 and GA3ox2 during seed imbibition. Neither abscisic acid nor GA levels in seed are appreciably affected by KAR1 treatment prior to radicle emergence, despite marked differences in germination outcome. KAR1 stimulation of Arabidopsis germination is light-dependent and reversible by far-red exposure, although limited induction of GA3ox1 still occurs in the dark. The observed requirements for light and GA biosynthesis provide the first insights into the karrikin mode of action.
Exposure of seeds to aerosol smoke or crude smoke extracts stimulates the germination of a number of fire-dependent and fire-independent plant species. We now report the identity of a germination-promoting compound present in plant- and cellulose-derived smoke. The structure of this compound, deduced from spectroscopic analysis and confirmed by synthesis, was shown to be that of the butenolide 3-methyl-2H-furo[2,3-c]pyran-2-one (1). Here we show that 1 promotes germination of a number of plant species at a level similar to that observed with plant-derived smoke water.