Search PubMed for references concerning: Hexylacetate
Title: The Functional Characterization of Carboxylesterases Involved in the Degradation of Volatile Esters Produced in Strawberry Fruits Zhang L, Zhou K, Wang M, Li R, Dai X, Liu Y, Jiang X, Xia T, Gao L Ref: Int J Mol Sci, 24:383, 2022 : PubMed
Volatile ester compounds are important contributors to the flavor of strawberry, which affect consumer preference. Here, the GC-MS results showed that volatile esters are the basic aroma components of strawberry, banana, apple, pear, and peach, and the volatile esters were significantly accumulated with the maturation of strawberry fruits. The main purpose of this study is to discuss the relationship between carboxylesterases (CXEs) and the accumulation of volatile ester components in strawberries. FaCXE2 and FaCXE3 were found to have the activity of hydrolyzing hexyl acetate, Z-3-hexenyl acetate, and E-2-hexenyl acetate to the corresponding alcohols. The enzyme kinetics results showed that FaCXE3 had the higher affinity for hexyl acetate, E-2-hexenyl acetate, and Z-3-hexenyl acetate compared with FaCXE2. The volatile esters were mainly accumulated at the maturity stages in strawberry fruits, less at the early stages, and the least during the following maturation stages. The expression of FaCXE2 gradually increased with fruit ripening and the expression level of FaCXE3 showed a decreasing trend, which suggested the complexity of the true function of CXEs. The transient expression of FaCXE2 and FaCXE3 genes in strawberry fruits resulted in a significantly decreased content of volatile esters, such as Z-3-hexenyl acetate, methyl hexanoate, methyl butyrate, and other volatile esters. Taken together, FaCXE2 and FaCXE3 are indeed involved in the regulation of the synthesis and degradation of strawberry volatile esters.
Esterases receive special attention because their wide distribution in biological systems and environments and their importance for physiology and chemical synthesis. The prediction of esterases substrate promiscuity level from sequence data and the molecular reasons why certain such enzymes are more promiscuous than others, remain to be elucidated. This limits the surveillance of the sequence space for esterases potentially leading to new versatile biocatalysts and new insights into their role in cellular function. Here we performed an extensive analysis of the substrate spectra of 145 phylogenetically and environmentally diverse microbial esterases, when tested with 96 diverse esters. We determined the primary factors shaping their substrate range by analyzing substrate range patterns in combination with structural analysis and protein-ligand simulations. We found a structural parameter that helps ranking (classifying) promiscuity level of esterases from sequence data at 94% accuracy. This parameter, the active site effective volume, exemplifies the topology of the catalytic environment by measuring the active site cavity volume corrected by the relative solvent accessible surface area (SASA) of the catalytic triad. Sequences encoding esterases with active site effective volumes (cavity volume/SASA) above a threshold show greater substrate spectra, which can be further extended in combination with phylogenetic data. This measure provides also a valuable tool for interrogating substrates capable of being converted. This measure, found to be transferred to phosphatases of the haloalkanoic acid dehalogenase superfamily and possibly other enzymatic systems, represents a powerful tool for low-cost bioprospecting for esterases with broad substrate ranges, in large scale sequence datasets.
        
Title: An antenna-biased carboxylesterase is specifically active to plant volatiles in Spodoptera exigua He P, Zhang YN, Yang K, Li ZQ, Dong SL Ref: Pestic Biochem Physiol, 123:93, 2015 : PubMed
Odorant-degrading enzymes (ODEs) in sensillar lymph are proposed to play important roles in the maintenance of the sensitivity of the olfactory sensilla, by timely degrading the odorants that have already fulfilled the activation of the odorant receptor (OR). Here we reported the cloning and characterization of an ODE gene (SexiCXE10) from the polyphagous insect pest Spodoptera exigua. SexiCXE10 is a carboxylesterase (CXE) gene, encoding a protein with 538 amino acid residues, and bearing typical characteristics of Carboxyl/cholinesterase (CCE, EC 3.1.1.1.) gene family. Tissue-temporal expression pattern by qPCR revealed that the SexiCXE10 mRNA was highly antenna biased, and maintained at high level throughout the adult stage. Further fluorescence in situ hybridization demonstrated that SexiCXE10 mRNA signal was detected under sensilla basiconica and short and long sensilla trichodea. Finally, enzymatic study using purified recombinant enzyme showed that SexiCXE10 had high activity specifically for ester plant volatiles with 7-10 carbon atoms, while no activity was found with S. exigua sex pheromone components and plant volatiles with more carbon atoms. In addition, SexiCXE10 displayed lower activity at acidic pH (pH 5.0), while higher activity was found at neutral and alkaline conditions (pH 6.5-9.0). Our results suggest that SexiCXE10 may play an important role in the degradation of the host plant volatiles, and thus contributes to the high sensitivity of the olfactory system in S. exigua. Meanwhile, the CXE would be a potential target for developing behavioral antagonists and pesticides against S. exigua.