Constituent of several essential oils; up to 60% in oils from Callitris and Eucalyptus species, and up to 14% in palmarosa oil. A smaller amount occurs in, for example, geranium, citronella, petitgrain, and lavender oils.
6 moreTitle: Geranyl acetate esterase controls and regulates the level of geraniol in lemongrass (Cymbopogon flexuosus Nees ex Steud.) mutant cv. GRL-1 leaves Ganjewala D, Luthra R Ref: Z Naturforsch C, 64:251, 2009 : PubMed
Essential oil isolated from lemongrass (Cymbopogon flexuosus) mutant cv. GRL-1 leaves is mainly composed of geraniol (G) and geranyl acetate (GA). The proportion of G and GA markedly fluctuates during leaf development. The proportions of GA and G in the essential oil recorded at day 10 after leaf emergence were approximately 59% and approximately 33% respectively. However, the level of GA went down from approximately 59 to approximately 3% whereas the level of G rose from approximately 33 to approximately 91% during the leaf growth period from day 10 to day 50. However, the decline in the level of GA was most pronounced in the early (day 10 to day 30) stage of leaf growth. The trend of changes in the proportion of GA and G has clearly indicated the role of an esterase that must be involved in the conversion of GA to G during leaf development. We isolated an esterase from leaves of different ages that converts GA into G and has been given the name geranyl acetate esterase (GAE). The GAE activity markedly varied during the leaf development cycle; it was closely correlated with the monoterpene (GA and G) composition throughout leaf development. GAE appeared as several isoenzymes but only three (GAE-I, GAE-II, and GAE-III) of them had significant GA cleaving activity. The GAE isoenzymes pattern was greatly influenced by the leaf developmental stages and so their GA cleaving activities. Like the GAE activity, GAE isoenzyme patterns were also found to be consistent with the monoterpene (GA and G) composition. GAE had an optimum pH at 8.5 and temperature at 30 degrees C. Besides GAE, a compound with phosphatase activity capable of hydrolyzing geranyl diphosphate (GPP) to produce geraniol has also been isolated.
        
Title: An integrated process: ester synthesis in an enzymatic membrane reactor and water sorption Trusek-Holownia A, Noworyta A Ref: J Biotechnol, 130:47, 2007 : PubMed
In the case of such reactions as ester synthesis, water is produced during the reaction. Because these reactions are carried out in hydrophobic solvents an additional (water) phase in the system must not be allowed, i.e. the concentration of water saturation in the organic solvent should not be exceeded. In such a case, the reaction kinetics and product equilibrium concentration undergo undesirable changes because of the partition coefficient of the components and hampered process of product separation. Hence, removal of the water produced in the reaction determines whether the process is successful or not. For this purpose, the integrated process with water sorption in the column with molecular sieves was applied. Integration of the process of synthesis and dehydration of a reaction phase, in which a biocatalyst is suspended and not dissolved as in water solutions, requires holding up of the catalyst in the reactor before directing the stream of reaction mixture to dehydration process. This hold-up and a possibility of multiple use of the catalyst may be accomplished by using a separating barrier, e.g. an ultrafiltration membrane or by permanent fixing of the catalyst to the matrix, e.g. a polymeric membrane. The efficiency and activity of a biocatalyst (lipase CAL-B) immobilized on a polymer membrane by sorption and chemical binding, were determined. A subject of study was the synthesis of geranyl acetate, one of the most known aromatic compound. A hydrophobic (polypropylene) matrix was shown to be a much better carrier in the reactions performed in an organic solvent than a hydrophilic (polyamide) membrane being tested. The reaction kinetics of geranyl acetate synthesis with the use of geraniol and acetic acid as substrates, was described by the equation defining the "Ping-Pong Bi Bi" mechanism that was related additionally to the inhibition of a substrate (acetic acid). The following constants of kinetic equation were obtained k(3)(')=0.344 mol g(-1)h(-1), K(mA)=0.257 mol l(-1), K(mG)=1.629 and K(iA)=0.288 for the native enzyme and v(max,Gel)=111.579 mol l(-1)h(-1), K(mA)=0.255 mol l(-1), K(mG)=1.91 mol l(-1), K(iA)=0.238 mol l(-1) for the one immobilized by sorption on a polypropylene membrane. Half-life time of the native enzyme activity was 204 h and stability of the immobilized preparation was 70 h. With respect to the reaction kinetics and stability of the native enzyme and immobilized preparation, from both types of membrane bioreactor more attractive appears to be the one in which the membrane is used not as a catalyst layer but only as a barrier that immobilizes the native enzyme within the bioreactor volume. When an integrated process proceeds, the method to collect water in the sorption column during the process, appeared to work very well. The reaction proceeded with a very high efficiency (after 120 h alpha=98.2% for native enzyme and 83.2% for immobilized enzyme) and due to low water concentration in the system ( approximately 0.000% v/v) the second phase was not created.
        
Title: An esterase is involved in geraniol production during palmarosa inflorescence development Dubey VS, Bhalla R, Luthra R Ref: Phytochemistry, 63:257, 2003 : PubMed
Total incorporation of exogenously administered [2-14C]acetate into essential oil of palmarosa (Cymbopogon martinii) was found to be relatively higher than that of either [U-14C]sucrose or [U-14C]glucose during inflorescence development. Among the major essential oil constituents, biogenesis of geranyl acetate was much higher than that of geraniol. Alkaline hydrolysis of [14C]labeled geranyl acetate revealed that the majority of the label incorporated into geranyl acetate was present in the geraniol moiety, indicating that only newly synthesized geraniol gets acetylated to form geranyl acetate. Geranyl acetate cleaving esterase (GAE) activity followed a similar pattern during both in vivo and in vitro inflorescence development, with maximum activity at immature inflorescence stages, suggesting the involvement of GAE in geraniol production during inflorescence development. Five esterase isozymes (Est-A to E) were detected in the enzymic fraction of palmarosa inflorescence and all showed GAE activity, with Est-B being significantly increased during inflorescence development. The role of GAE in geraniol production and improving the palmarosa oil quality is discussed.
Esterases receive special attention because their wide distribution in biological systems and environments and their importance for physiology and chemical synthesis. The prediction of esterases substrate promiscuity level from sequence data and the molecular reasons why certain such enzymes are more promiscuous than others, remain to be elucidated. This limits the surveillance of the sequence space for esterases potentially leading to new versatile biocatalysts and new insights into their role in cellular function. Here we performed an extensive analysis of the substrate spectra of 145 phylogenetically and environmentally diverse microbial esterases, when tested with 96 diverse esters. We determined the primary factors shaping their substrate range by analyzing substrate range patterns in combination with structural analysis and protein-ligand simulations. We found a structural parameter that helps ranking (classifying) promiscuity level of esterases from sequence data at 94% accuracy. This parameter, the active site effective volume, exemplifies the topology of the catalytic environment by measuring the active site cavity volume corrected by the relative solvent accessible surface area (SASA) of the catalytic triad. Sequences encoding esterases with active site effective volumes (cavity volume/SASA) above a threshold show greater substrate spectra, which can be further extended in combination with phylogenetic data. This measure provides also a valuable tool for interrogating substrates capable of being converted. This measure, found to be transferred to phosphatases of the haloalkanoic acid dehalogenase superfamily and possibly other enzymatic systems, represents a powerful tool for low-cost bioprospecting for esterases with broad substrate ranges, in large scale sequence datasets.
        
Title: An antenna-biased carboxylesterase is specifically active to plant volatiles in Spodoptera exigua He P, Zhang YN, Yang K, Li ZQ, Dong SL Ref: Pestic Biochem Physiol, 123:93, 2015 : PubMed
Odorant-degrading enzymes (ODEs) in sensillar lymph are proposed to play important roles in the maintenance of the sensitivity of the olfactory sensilla, by timely degrading the odorants that have already fulfilled the activation of the odorant receptor (OR). Here we reported the cloning and characterization of an ODE gene (SexiCXE10) from the polyphagous insect pest Spodoptera exigua. SexiCXE10 is a carboxylesterase (CXE) gene, encoding a protein with 538 amino acid residues, and bearing typical characteristics of Carboxyl/cholinesterase (CCE, EC 3.1.1.1.) gene family. Tissue-temporal expression pattern by qPCR revealed that the SexiCXE10 mRNA was highly antenna biased, and maintained at high level throughout the adult stage. Further fluorescence in situ hybridization demonstrated that SexiCXE10 mRNA signal was detected under sensilla basiconica and short and long sensilla trichodea. Finally, enzymatic study using purified recombinant enzyme showed that SexiCXE10 had high activity specifically for ester plant volatiles with 7-10 carbon atoms, while no activity was found with S. exigua sex pheromone components and plant volatiles with more carbon atoms. In addition, SexiCXE10 displayed lower activity at acidic pH (pH 5.0), while higher activity was found at neutral and alkaline conditions (pH 6.5-9.0). Our results suggest that SexiCXE10 may play an important role in the degradation of the host plant volatiles, and thus contributes to the high sensitivity of the olfactory system in S. exigua. Meanwhile, the CXE would be a potential target for developing behavioral antagonists and pesticides against S. exigua.
        
Title: Geranyl acetate esterase controls and regulates the level of geraniol in lemongrass (Cymbopogon flexuosus Nees ex Steud.) mutant cv. GRL-1 leaves Ganjewala D, Luthra R Ref: Z Naturforsch C, 64:251, 2009 : PubMed
Essential oil isolated from lemongrass (Cymbopogon flexuosus) mutant cv. GRL-1 leaves is mainly composed of geraniol (G) and geranyl acetate (GA). The proportion of G and GA markedly fluctuates during leaf development. The proportions of GA and G in the essential oil recorded at day 10 after leaf emergence were approximately 59% and approximately 33% respectively. However, the level of GA went down from approximately 59 to approximately 3% whereas the level of G rose from approximately 33 to approximately 91% during the leaf growth period from day 10 to day 50. However, the decline in the level of GA was most pronounced in the early (day 10 to day 30) stage of leaf growth. The trend of changes in the proportion of GA and G has clearly indicated the role of an esterase that must be involved in the conversion of GA to G during leaf development. We isolated an esterase from leaves of different ages that converts GA into G and has been given the name geranyl acetate esterase (GAE). The GAE activity markedly varied during the leaf development cycle; it was closely correlated with the monoterpene (GA and G) composition throughout leaf development. GAE appeared as several isoenzymes but only three (GAE-I, GAE-II, and GAE-III) of them had significant GA cleaving activity. The GAE isoenzymes pattern was greatly influenced by the leaf developmental stages and so their GA cleaving activities. Like the GAE activity, GAE isoenzyme patterns were also found to be consistent with the monoterpene (GA and G) composition. GAE had an optimum pH at 8.5 and temperature at 30 degrees C. Besides GAE, a compound with phosphatase activity capable of hydrolyzing geranyl diphosphate (GPP) to produce geraniol has also been isolated.
        
Title: An integrated process: ester synthesis in an enzymatic membrane reactor and water sorption Trusek-Holownia A, Noworyta A Ref: J Biotechnol, 130:47, 2007 : PubMed
In the case of such reactions as ester synthesis, water is produced during the reaction. Because these reactions are carried out in hydrophobic solvents an additional (water) phase in the system must not be allowed, i.e. the concentration of water saturation in the organic solvent should not be exceeded. In such a case, the reaction kinetics and product equilibrium concentration undergo undesirable changes because of the partition coefficient of the components and hampered process of product separation. Hence, removal of the water produced in the reaction determines whether the process is successful or not. For this purpose, the integrated process with water sorption in the column with molecular sieves was applied. Integration of the process of synthesis and dehydration of a reaction phase, in which a biocatalyst is suspended and not dissolved as in water solutions, requires holding up of the catalyst in the reactor before directing the stream of reaction mixture to dehydration process. This hold-up and a possibility of multiple use of the catalyst may be accomplished by using a separating barrier, e.g. an ultrafiltration membrane or by permanent fixing of the catalyst to the matrix, e.g. a polymeric membrane. The efficiency and activity of a biocatalyst (lipase CAL-B) immobilized on a polymer membrane by sorption and chemical binding, were determined. A subject of study was the synthesis of geranyl acetate, one of the most known aromatic compound. A hydrophobic (polypropylene) matrix was shown to be a much better carrier in the reactions performed in an organic solvent than a hydrophilic (polyamide) membrane being tested. The reaction kinetics of geranyl acetate synthesis with the use of geraniol and acetic acid as substrates, was described by the equation defining the "Ping-Pong Bi Bi" mechanism that was related additionally to the inhibition of a substrate (acetic acid). The following constants of kinetic equation were obtained k(3)(')=0.344 mol g(-1)h(-1), K(mA)=0.257 mol l(-1), K(mG)=1.629 and K(iA)=0.288 for the native enzyme and v(max,Gel)=111.579 mol l(-1)h(-1), K(mA)=0.255 mol l(-1), K(mG)=1.91 mol l(-1), K(iA)=0.238 mol l(-1) for the one immobilized by sorption on a polypropylene membrane. Half-life time of the native enzyme activity was 204 h and stability of the immobilized preparation was 70 h. With respect to the reaction kinetics and stability of the native enzyme and immobilized preparation, from both types of membrane bioreactor more attractive appears to be the one in which the membrane is used not as a catalyst layer but only as a barrier that immobilizes the native enzyme within the bioreactor volume. When an integrated process proceeds, the method to collect water in the sorption column during the process, appeared to work very well. The reaction proceeded with a very high efficiency (after 120 h alpha=98.2% for native enzyme and 83.2% for immobilized enzyme) and due to low water concentration in the system ( approximately 0.000% v/v) the second phase was not created.
        
Title: An esterase is involved in geraniol production during palmarosa inflorescence development Dubey VS, Bhalla R, Luthra R Ref: Phytochemistry, 63:257, 2003 : PubMed
Total incorporation of exogenously administered [2-14C]acetate into essential oil of palmarosa (Cymbopogon martinii) was found to be relatively higher than that of either [U-14C]sucrose or [U-14C]glucose during inflorescence development. Among the major essential oil constituents, biogenesis of geranyl acetate was much higher than that of geraniol. Alkaline hydrolysis of [14C]labeled geranyl acetate revealed that the majority of the label incorporated into geranyl acetate was present in the geraniol moiety, indicating that only newly synthesized geraniol gets acetylated to form geranyl acetate. Geranyl acetate cleaving esterase (GAE) activity followed a similar pattern during both in vivo and in vitro inflorescence development, with maximum activity at immature inflorescence stages, suggesting the involvement of GAE in geraniol production during inflorescence development. Five esterase isozymes (Est-A to E) were detected in the enzymic fraction of palmarosa inflorescence and all showed GAE activity, with Est-B being significantly increased during inflorescence development. The role of GAE in geraniol production and improving the palmarosa oil quality is discussed.
        
Title: Water activity effects on geranyl acetate synthesis catalyzed by novozym in supercritical ethane and in supercritical carbon dioxide Peres C, Gomes da Silva MD, Barreiros S Ref: Journal of Agricultural and Food Chemistry, 51:1884, 2003 : PubMed
The esterification reaction of geraniol with acetic acid catalyzed by Novozym was studied in supercritical ethane (sc-ethane) and in supercritical carbon dioxide (sc-CO(2)). Water activity (a(W)) had a very strong effect on enzyme activity, with reaction rates increasing up to a(W) = 0.25 and then decreasing for higher a(W). Salt hydrate pairs could not prevent changes in a(W) during the course of reaction but were able to control a(W) to some extent and had a beneficial effect on both initial rates of esterification and conversion in sc-ethane. The enzyme was more active in sc-ethane than in sc-CO(2), confirming the deleterious effect of the latter already observed with some enzymes. Temperatures between 40 and 60 degrees C did not have a strong effect on initial rates of esterification, although reaction progress declined considerably in that temperature range. For the mixture of 50 mM acetic acid plus 200 mM geraniol, 100% conversion was achieved at a reaction time of 10 h at 40 degrees C, 100 bar, an a(W) of incubation of 0.25, and a Novozym concentration of 0.55 mg cm(-)(3) in sc-ethane. Conversion was below 50% in sc-CO(2) at otherwise identical conditions. With an equimolar mixture of the two substrates (100 mM), 98% conversion was reached at 10 h of reaction in sc-ethane (73% conversion in sc-CO(2)).
The esterification of geraniol with acetic acid in n-hexane was investigated. A commercial lipase preparation from Candida antarctica was used as catalyst. The equilibrium conversion (no water removal) was found to be 94% for the reaction of 0.1 M alcohol and 0.1 M acid in n-hexane at 30 degrees C. This was shown by both hydrolysis and esterification reactions. The activation energy of reaction over the temperature range 10 degrees to 50 degrees C was found to be 16 kJ/mol. The standard heat of reaction was -28 kJ/mol. Membrane pervaporation using a cellulose acetate/ceramic composite membrane was then employed for selective removal of water from the reaction mixture. The membrane was highly effective at removing water while retaining all reaction components. Negligible transport of the solvent n-hexane was observed. Water removal by pervaporation increased the reaction rate by approximately 150% and increased steady-state conversion to 100%.
        
Title: Biotransformation of geranyl acetate to geraniol during palmarosa (Cymbopogon martinii, Roxb. wats. var. motia) inflorescence development Dubey VS, Luthra R Ref: Phytochemistry, 57:675, 2001 : PubMed
Only immature palmarosa (Cymbopogon martinii, Roxb. wats. var. motia) inflorescence with unopened spikelets accumulated essential oil substantially. Geraniol and geranyl acetate together constituted about 90% of the palmarosa oil. The proportion of geranyl acetate in the oil decreased significantly with a corresponding increase of geraniol, during inflorescence development. An esterase enzyme activity, involved in the transformation of geranyl acetate to geraniol, was detected from the immature inflorescence using a gas chromatographic procedure. The enzyme, termed as geranyl acetate cleaving esterase (GAE), was found to be active in the alkaline pH range with the optimum at pH 8.5. The catalysis of geranyl acetate was linear up to 6 h, and after 24 h of incubation, 75% of the geranyl acetate incubated was hydrolyzed. The GAE enzymic preparation, when stored at 4 degrees C for a week, was quite stable with only 40% loss of activity. The physiological role of GAE in the production of geraniol during palmarosa inflorescence development has been discussed.
        
Title: Bio-degradation of acetates of geraniol, nerol & citronellol by P. incognita: isolation & identification of metabolites Madyastha KM, Renganathan V Ref: Indian J Biochem Biophys, 20:136, 1983 : PubMed