One enzyme convert (S)4-Chloro-3-hydroxybutyrate in the racemate to (S)-3-hydroxy-gamma-butyrolactone through asymmetric dechlorination, hydrolysis, and lactonization. Ethyl (S)-4-chloro-3-hydroxybutyrate is an intermediate for the synthesis of Atorvastatin, a chiral drug used for hypercholesterolemia
Esterases receive special attention because their wide distribution in biological systems and environments and their importance for physiology and chemical synthesis. The prediction of esterases substrate promiscuity level from sequence data and the molecular reasons why certain such enzymes are more promiscuous than others, remain to be elucidated. This limits the surveillance of the sequence space for esterases potentially leading to new versatile biocatalysts and new insights into their role in cellular function. Here we performed an extensive analysis of the substrate spectra of 145 phylogenetically and environmentally diverse microbial esterases, when tested with 96 diverse esters. We determined the primary factors shaping their substrate range by analyzing substrate range patterns in combination with structural analysis and protein-ligand simulations. We found a structural parameter that helps ranking (classifying) promiscuity level of esterases from sequence data at 94% accuracy. This parameter, the active site effective volume, exemplifies the topology of the catalytic environment by measuring the active site cavity volume corrected by the relative solvent accessible surface area (SASA) of the catalytic triad. Sequences encoding esterases with active site effective volumes (cavity volume/SASA) above a threshold show greater substrate spectra, which can be further extended in combination with phylogenetic data. This measure provides also a valuable tool for interrogating substrates capable of being converted. This measure, found to be transferred to phosphatases of the haloalkanoic acid dehalogenase superfamily and possibly other enzymatic systems, represents a powerful tool for low-cost bioprospecting for esterases with broad substrate ranges, in large scale sequence datasets.
        
Title: Improvement on production of (R)-4-chloro-3-hydroxybutyrate and (S)-3-hydroxy-gamma-butyrolactone with recombinant Escherichia coli cells Nakagawa A, Idogaki H, Kato K, Shinmyo A, Suzuki T Ref: J Biosci Bioeng, 101:97, 2006 : PubMed
(R)-4-Chloro-3-hydroxybutyrate (CHB) and (S)-3-hydroxy-gamma-butyrolactone (HL) are used for the synthesis of biologically and pharmacologically important compounds. Enterobacter sp. DS-S-75 was found to have the unique activity to convert (S)-CHB in the racemate to (S)-HL through asymmetric dechlorination, hydrolysis, and lactonization. As a result, the remaining (R)-CHB and formed (S)-HL could be obtained in a one-pot reaction. We purified the CHB degrading enzyme which catalyzing these reactions and isolated the coding gene from the strain DS-S-75 in order to improve the productivity of these compounds using the transformant. Interestingly, the purified enzyme showed not only dechlorinating, but also hydrolyzing activities on CHB and the similar carboxylic esters, it was then designated CHB hydrolase, and appears to be a novel enzyme. The gene had 1101 bp encoding 367 amino acids including a signal peptide composed of 25 residues. The deduced amino acid sequence contained a conserved region generally found in esterases and lipases, but did not have significant similarity. When asymmetric degradation of racemic methyl CHB (CHBM) was performed using a culture broth of Escherichia coli DH5alpha transformed with the isolated gene, the reaction time was shortened 20-fold over that of the strain DS-S-75, and the maximum concentration of the substrate could be increased from 8% to 15% (w/v). Moreover, both of the obtained residual (R)-CHBM and the formed (S)-HL had high optical purities (>99% e.e.).