Used for treatment of adults with relapsing forms of multiple sclerosis. It has a role as an immunomodulator and an antipsoriatic. It is converted into its active metabolite monomethyl fumarate (MMF) by carboxylesterases. MMF binds to nuclear factor erythroid 2(Nrf2)
1 moreTitle: A multi-target directed ligands strategy for the treatment of Alzheimer's disease: Dimethyl fumarate plus Tranilast modified Dithiocarbate as AChE inhibitor and Nrf2 activator Guo J, Cheng M, Liu P, Cao D, Luo J, Wan Y, Fang Y, Jin Y, Xie SS, Liu J Ref: Eur Journal of Medicinal Chemistry, 242:114630, 2022 : PubMed
Alzheimer's disease (AD) possessed intricate pathogenesis. Currently, multi-targeted drugs were considered to have the potential to against AD by simultaneously triggering molecules in functionally complementary pathways. Hence, a series of molecules based on the pharmacophoric features of Dimethyl fumarate, Tranilast, and Dithiocarbate were designed and synthesized. These compounds showed significant AChE inhibitory activity in vitro. Among them, compound 4c(2) displayed the mighty inhibitory activity to hAChE (IC(50) = 0.053 microM) and held the ability to cross the BBB. Kinetic study and molecular docking pointed out that 4c(2) bound well into the active sites of hAChE, forming steady and sturdy interactions with key residues in hAChE. Additionally, 4c(2) as an Nrf2 activator could promote the nuclear translocation of Nrf2 protein and induce the expressions of Nrf2-dependent enzymes HO-1, NQO1, and GPX4. Moreover, 4c(2) rescued BV-2 cells from H(2)O(2)-induced injury and inhibited ROS accumulation. For the anti-neuroinflammatory potential of 4c(2), we observed that 4c(2) could lower the levels of pro-inflammatory cytokines (NO, IL-6 and TNF-alpha) and suppressed the expressions of iNOS and COX-2. In particular, 4c(2) was well tolerated in mice (2500 mg/kg, p.o.) and efficaciously recovered the memory impairment in a Scopolamine-induced mouse model. Overall, these results highlighted that 4c(2) was a promising multi-targeted agent for treating AD.
Dimethyl fumarate (DMF) is an effective oral treatment for psoriasis administered in Europe for nearly 60 years. However, its potential has been limited by contact dermatitis that prohibits topical application. This paper characterizes a DMF derivative, isosorbide DMF (IDMF), which was designed to have antipsoriatic effects without skin-sensitizing properties. We show that IDMF exhibits neither genotoxicity nor radiation sensitivity in skin fibroblasts and is nonirritating and nonsensitizing in animal models (rat, rabbit, guinea pig). Microarray analysis of cytokine-stimulated keratinocytes showed that IDMF represses the expression of genes specifically upregulated in psoriatic skin lesions but not those of other skin diseases. IDMF also downregulated genes induced by IL-17A and TNF in keratinocytes as well as predicted targets of NF-kappaB and the antidifferentiation noncoding RNA (i.e., ANCR). IDMF further stimulated the transcription of oxidative stress response genes (NQO1, GPX2, GSR) with stronger NRF2/ARE activation compared to DMF. Finally, IDMF reduced erythema and scaling while repressing the expression of immune response genes in psoriasiform lesions elicited by topical application of imiquimod in mice. These data show that IDMF exhibits antipsoriatic activity that is similar or improved compared with that exhibited by DMF, without the harsh skin-sensitizing effects that have prevented topical delivery of the parent molecule.
        
Title: Dimethyl fumarate attenuates 2-VO-induced vascular dementia via activating the Nrf2 signaling pathway in rats Dhaliwal N, Dhaliwal J, Singh A, Chopra K Ref: Inflammopharmacology, :, 2021 : PubMed
BACKGROUND: Chronic cerebral hypoperfusion (CCH) induced oxidative stress and inflammation is known to be implicated in the pathogenesis of vascular dementia. The nuclear factor erythroid 2-related factor 2 (Nrf2) has emerged as a potential therapeutic target for neuroprotection. In the present study, we investigated the beneficial effects of dimethyl fumarate (DMF), an Nrf2 activator in an experimental model of vascular dementia. METHODS: Permanent occlusion of the bilateral common carotid arteries (2-VO) was performed to induce CCH in adult male Sprague-Dawley rats. DMF (15, 30, and 60 mg/kg) was administered for 4 weeks. Cognitive performance was assessed using the Morris water maze (MWM) and novel object (NOR) tests. After behavior tests, various oxidative and inflammatory markers were assessed in the hippocampus. RESULTS: The obtained results indicate that treatment with DMF significantly improved 2 VO-induced cognitive deficits. DMF decreased MDA (p < 0.001), protein carbonyl (PCO) contents (p < 0.001), and acetylcholinesterase (p < 0.01) activities, and inhibited inflammatory markers (TNF-alpha, IL-1beta, NF-kappabeta, and COX-2) levels. Furthermore, our results showed that DMF augmented GSH (p < 0.001) levels and SOD (p < 0.05), CAT, and GSH-Px (p < 0.001) activities in the hippocampus. Nrf2 (p < 0.05) and its downstream targets HO-1 levels (p < 0.01) and NQO1 (p < 0.05) levels were also up-regulated after DMF treatment. CONCLUSION: Taken together, the results demonstrate that DMF could serve as a promising neuroprotective agent for treating vascular dementia.
        
1 lessTitle: A multi-target directed ligands strategy for the treatment of Alzheimer's disease: Dimethyl fumarate plus Tranilast modified Dithiocarbate as AChE inhibitor and Nrf2 activator Guo J, Cheng M, Liu P, Cao D, Luo J, Wan Y, Fang Y, Jin Y, Xie SS, Liu J Ref: Eur Journal of Medicinal Chemistry, 242:114630, 2022 : PubMed
Alzheimer's disease (AD) possessed intricate pathogenesis. Currently, multi-targeted drugs were considered to have the potential to against AD by simultaneously triggering molecules in functionally complementary pathways. Hence, a series of molecules based on the pharmacophoric features of Dimethyl fumarate, Tranilast, and Dithiocarbate were designed and synthesized. These compounds showed significant AChE inhibitory activity in vitro. Among them, compound 4c(2) displayed the mighty inhibitory activity to hAChE (IC(50) = 0.053 microM) and held the ability to cross the BBB. Kinetic study and molecular docking pointed out that 4c(2) bound well into the active sites of hAChE, forming steady and sturdy interactions with key residues in hAChE. Additionally, 4c(2) as an Nrf2 activator could promote the nuclear translocation of Nrf2 protein and induce the expressions of Nrf2-dependent enzymes HO-1, NQO1, and GPX4. Moreover, 4c(2) rescued BV-2 cells from H(2)O(2)-induced injury and inhibited ROS accumulation. For the anti-neuroinflammatory potential of 4c(2), we observed that 4c(2) could lower the levels of pro-inflammatory cytokines (NO, IL-6 and TNF-alpha) and suppressed the expressions of iNOS and COX-2. In particular, 4c(2) was well tolerated in mice (2500 mg/kg, p.o.) and efficaciously recovered the memory impairment in a Scopolamine-induced mouse model. Overall, these results highlighted that 4c(2) was a promising multi-targeted agent for treating AD.
        
Title: Alcohol inhibits the metabolism of dimethyl fumarate to the active metabolite responsible for decreasing relapse frequency in the treatment of multiple sclerosis Yang B, Parker RB, Meibohm B, Temrikar ZH, Srivastava A, Laizure SC Ref: PLoS ONE, 17:e0278111, 2022 : PubMed
Dimethyl fumarate (DMF) is a first-line prodrug for the treatment of relapsing-remitting multiple sclerosis (RRMS) that is completely metabolized to monomethyl fumarate (MMF), the active metabolite, before reaching the systemic circulation. Its metabolism has been proposed to be due to ubiquitous esterases in the intestines and other tissues, but the specific enzymes involved are unknown. We hypothesized based on its structure and extensive presystemic metabolism that DMF would be a carboxylesterase substrate subject to interaction with alcohol. We sought to determine the enzymes(s) responsible for the extensive presystemic metabolism of DMF to MMF and the effect of alcohol on its disposition by conducting metabolic incubation studies in human recombinant carboxylesterase-1 (CES1), carboxylesterase-2 (CES2) and human intestinal microsomes (HIM), and by performing a follow-up study in an in vivo mouse model. The in vitro incubation studies demonstrated that DMF was only metabolized to MMF by CES1. Consistent with the incubation studies, the mouse pharmacokinetic study demonstrated that alcohol decreased the maximum concentration and area-under-the-curve of MMF in the plasma and the brain after dosing with DMF. We conclude that alcohol may markedly decrease exposure to the active MMF metabolite in the plasma and brain potentially decreasing the effectiveness of DMF in the treatment of RRMS.
Dimethyl fumarate (DMF) is an effective oral treatment for psoriasis administered in Europe for nearly 60 years. However, its potential has been limited by contact dermatitis that prohibits topical application. This paper characterizes a DMF derivative, isosorbide DMF (IDMF), which was designed to have antipsoriatic effects without skin-sensitizing properties. We show that IDMF exhibits neither genotoxicity nor radiation sensitivity in skin fibroblasts and is nonirritating and nonsensitizing in animal models (rat, rabbit, guinea pig). Microarray analysis of cytokine-stimulated keratinocytes showed that IDMF represses the expression of genes specifically upregulated in psoriatic skin lesions but not those of other skin diseases. IDMF also downregulated genes induced by IL-17A and TNF in keratinocytes as well as predicted targets of NF-kappaB and the antidifferentiation noncoding RNA (i.e., ANCR). IDMF further stimulated the transcription of oxidative stress response genes (NQO1, GPX2, GSR) with stronger NRF2/ARE activation compared to DMF. Finally, IDMF reduced erythema and scaling while repressing the expression of immune response genes in psoriasiform lesions elicited by topical application of imiquimod in mice. These data show that IDMF exhibits antipsoriatic activity that is similar or improved compared with that exhibited by DMF, without the harsh skin-sensitizing effects that have prevented topical delivery of the parent molecule.
        
Title: Dimethyl fumarate attenuates 2-VO-induced vascular dementia via activating the Nrf2 signaling pathway in rats Dhaliwal N, Dhaliwal J, Singh A, Chopra K Ref: Inflammopharmacology, :, 2021 : PubMed
BACKGROUND: Chronic cerebral hypoperfusion (CCH) induced oxidative stress and inflammation is known to be implicated in the pathogenesis of vascular dementia. The nuclear factor erythroid 2-related factor 2 (Nrf2) has emerged as a potential therapeutic target for neuroprotection. In the present study, we investigated the beneficial effects of dimethyl fumarate (DMF), an Nrf2 activator in an experimental model of vascular dementia. METHODS: Permanent occlusion of the bilateral common carotid arteries (2-VO) was performed to induce CCH in adult male Sprague-Dawley rats. DMF (15, 30, and 60 mg/kg) was administered for 4 weeks. Cognitive performance was assessed using the Morris water maze (MWM) and novel object (NOR) tests. After behavior tests, various oxidative and inflammatory markers were assessed in the hippocampus. RESULTS: The obtained results indicate that treatment with DMF significantly improved 2 VO-induced cognitive deficits. DMF decreased MDA (p < 0.001), protein carbonyl (PCO) contents (p < 0.001), and acetylcholinesterase (p < 0.01) activities, and inhibited inflammatory markers (TNF-alpha, IL-1beta, NF-kappabeta, and COX-2) levels. Furthermore, our results showed that DMF augmented GSH (p < 0.001) levels and SOD (p < 0.05), CAT, and GSH-Px (p < 0.001) activities in the hippocampus. Nrf2 (p < 0.05) and its downstream targets HO-1 levels (p < 0.01) and NQO1 (p < 0.05) levels were also up-regulated after DMF treatment. CONCLUSION: Taken together, the results demonstrate that DMF could serve as a promising neuroprotective agent for treating vascular dementia.