Pro-fluorescent probe attached to cysteine analog containing octanoyl thioester. Small molecule probes that become fluorescent upon S-depalmitoylase enzymatic activity. The carbamate-linked APT (acyl protein thioesterase) substrate forces the fluorophore into the lactone-closed, non-fluorescent form. Cleavage of the thioester by reaction with an APT releases the thiol, which rapidly cleaves the carbamate, generating a fluorescent product. Enables live cell imaging of thioesterase activity in cytosol
The reversible modification of cysteine residues by thioester formation with palmitate (S-palmitoylation) is an abundant lipid post-translational modification (PTM) in mammalian systems. S-palmitoylation has been observed on mitochondrial proteins, providing an intriguing potential connection between metabolic lipids and mitochondrial regulation. However, it is unknown whether and/or how mitochondrial S-palmitoylation is regulated. Here we report the development of mitoDPPs, targeted fluorescent probes that measure the activity levels of "erasers" of S-palmitoylation, acyl-protein thioesterases (APTs), within mitochondria of live cells. Using mitoDPPs, we discover active S-depalmitoylation in mitochondria, in part mediated by APT1, an S-depalmitoylase previously thought to reside in the cytosol and on the Golgi apparatus. We also find that perturbation of long-chain acyl-CoA cytoplasm and mitochondrial regulatory proteins, respectively, results in selective responses from cytosolic and mitochondrial S-depalmitoylases. Altogether, this work reveals that mitochondrial S-palmitoylation is actively regulated by "eraser" enzymes that respond to alterations in mitochondrial lipid homeostasis.
        
Title: A fluorescent probe for cysteine depalmitoylation reveals dynamic APT signaling Kathayat RS, Elvira PD, Dickinson BC Ref: Nat Chemical Biology, 13:150, 2017 : PubMed
Hundreds of human proteins are modified by reversible palmitoylation of cysteine residues (S-palmitoylation), but the regulation of depalmitoylation is poorly understood. Here, we develop 'depalmitoylation probes' (DPPs), small-molecule fluorophores, to monitor the endogenous activity levels of 'erasers' of S-palmitoylation, acylprotein thioesterases (APTs). Live-cell analysis with DPPs reveals rapid growth-factor-mediated inhibition of the depalmitoylation activity of APTs, exposing a novel regulatory mechanism of dynamic lipid signaling.