Cotylimide-VI ligand of proteins in family: RsbQ-like
References:
Search PubMed for references concerning: Cotylimide-VI
Title: Detection of Parasitic Plant Suicide Germination Compounds Using a High-Throughput Arabidopsis HTL/KAI2 Strigolactone Perception System Toh S, Holbrook-Smith D, Stokes ME, Tsuchiya Y, McCourt P Ref: Chemical Biology, 21:988, 2014 : PubMed
Strigolactones are terpenoid-based plant hormones that act as communication signals within a plant, between plants and fungi, and between parasitic plants and their hosts. Here we show that an active enantiomer form of the strigolactone GR24, the germination stimulant karrikin, and a number of structurally related small molecules called cotylimides all bind the HTL/KAI2 alpha/beta hydrolase in Arabidopsis. Strigolactones and cotylimides also promoted an interaction between HTL/KAI2 and the F-box protein MAX2 in yeast. Identification of this chemically dependent protein-protein interaction prompted the development of a yeast-based, high-throughput chemical screen for potential strigolactone mimics. Of the 40 lead compounds identified, three were found to have in planta strigolactone activity using Arabidopsis-based assays. More importantly, these three compounds were all found to stimulate suicide germination of the obligate parasitic plant Striga hermonthica. These results suggest that screening strategies involving yeast/Arabidopsis models may be useful in combating parasitic plant infestations.
Parasitic weeds of the genera Striga and Orobanche are considered the most damaging agricultural agents in the developing world. An essential step in parasitic seed germination is sensing a group of structurally related compounds called strigolactones that are released by host plants. Although this makes strigolactone synthesis and action a major target of biotechnology, little fundamental information is known about this hormone. Chemical genetic screening using Arabidopsis thaliana as a platform identified a collection of related small molecules, cotylimides, which perturb strigolactone accumulation. Suppressor screens against select cotylimides identified light-signaling genes as positive regulators of strigolactone levels. Molecular analysis showed strigolactones regulate the nuclear localization of the COP1 ubiquitin ligase, which in part determines the levels of light regulators such as HY5. This information not only uncovers new functions for strigolactones but was also used to identify rice cultivars with reduced capacity to germinate parasitic seed.