Strigolactones (SLs) stimulate seed germination of root parasitic plants and induce hyphal branching of arbuscular mycorrhizal fungi in the rhizosphere. In addition, they have been classified as a new group of plant hormones essential for shoot branching inhibition. It has been demonstrated thus far that SLs are derived from carotenoid via a biosynthetic precursor carlactone (CL), which is produced by sequential reactions of DWARF27 (D27) enzyme and two carotenoid cleavage dioxygenases CCD7 and CCD8. We previously found an extreme accumulation of CL in the more axillary growth1 (max1) mutant of Arabidopsis, which exhibits increased lateral inflorescences due to SL deficiency, indicating that CL is a probable substrate for MAX1 (CYP711A1), a cytochrome P450 monooxygenase. To elucidate the enzymatic function of MAX1 in SL biosynthesis, we incubated CL with a recombinant MAX1 protein expressed in yeast microsomes. MAX1 catalyzed consecutive oxidations at C-19 of CL to convert the C-19 methyl group into carboxylic acid, 9-desmethyl-9-carboxy-CL [designated as carlactonoic acid (CLA)]. We also identified endogenous CLA and its methyl ester [methyl carlactonoate (MeCLA)] in Arabidopsis plants using LC-MS/MS. Although an exogenous application of either CLA or MeCLA suppressed the growth of lateral inflorescences of the max1 mutant, MeCLA, but not CLA, interacted with Arabidopsis thaliana DWARF14 (AtD14) protein, a putative SL receptor, as shown by differential scanning fluorimetry and hydrolysis activity tests. These results indicate that not only known SLs but also MeCLA are biologically active in inhibiting shoot branching in Arabidopsis.
Strigolactones, phytohormones with diverse signaling activities, have a common structure consisting of two lactones connected by an enol-ether bridge. Strigolactones derive from carotenoids via a pathway involving the carotenoid cleavage dioxygenases 7 and 8 (CCD7 and CCD8) and the iron-binding protein D27. We show that D27 is a beta-carotene isomerase that converts all-trans-beta-carotene into 9-cis-beta-carotene, which is cleaved by CCD7 into a 9-cis-configured aldehyde. CCD8 incorporates three oxygens into 9-cis-beta-apo-10'-carotenal and performs molecular rearrangement, linking carotenoids with strigolactones and producing carlactone, a compound with strigolactone-like biological activities. Knowledge of the structure of carlactone will be crucial for understanding the biology of strigolactones and may have applications in combating parasitic weeds.
CYP722C from cotton, a homolog of the enzyme involved in orobanchol synthesis in cowpea and tomato, catalyzes the conversion of carlactonoic acid to 5-deoxystrigol. Strigolactones (SLs) are important phytohormones with roles in the regulation of plant growth and development. These compounds also function as signaling molecules in the rhizosphere by interacting with beneficial arbuscular mycorrhizal fungi and harmful root parasitic plants. Canonical SLs, such as 5-deoxystrigol (5DS), consist of a tricyclic lactone ring (ABC-ring) connected to a methylbutenolide (D-ring). Although it is known that 5DS biosynthesis begins with carlactonoic acid (CLA) derived from beta-carotene, the enzyme that catalyzes the conversion of CLA remains elusive. Recently, we identified cytochrome P450 (CYP) CYP722C as the enzyme that catalyzes direct conversion of CLA to orobanchol in cowpea and tomato (Wakabayashi et al., Sci Adv 5:eaax9067, 2019). Orobanchol has a different C-ring configuration from that of 5DS. The present study aimed to characterize the homologous gene, designated GaCYP722C, from cotton (Gossypium arboreum) to examine whether this gene is involved in 5DS biosynthesis. Expression of GaCYP722C was upregulated under phosphate starvation, which is an SL-producing condition. Recombinant GaCYP722C was expressed in a baculovirus-insect cell expression system and was found to catalyze the conversion of CLA to 5DS but not to 4-deoxyorobanchol. These results strongly suggest that GaCYP722C from cotton is a 5DS synthase and that CYP722C is the crucial CYP subfamily involved in the generation of canonical SLs, irrespective of the different C-ring configurations.
Strigolactones (SLs), comprising compounds with diverse but related chemical structures, are determinant signals in elicitation of germination in root parasitic Orobanchaceae and in mycorrhization in plants. Further, SLs are a novel class of plant hormones that regulate root and shoot architecture. Dissecting common and divergent biosynthetic pathways of SLs may provide avenues for modulating their production in planta. Biosynthesis of SLs in various SL-producing plant species was inhibited by fluridone, a phytoene desaturase inhibitor. The plausible biosynthetic precursors of SLs were exogenously applied to plants, and their conversion to canonical and non-canonical SLs was analysed using liquid chromatography-tandem mass spectrometry. The conversion of carlactone (CL) to carlactonoic acid (CLA) was a common reaction in all investigated plants. Sorghum converted CLA to 5-deoxystrigol (5-DS) and sorgomol, and 5-DS to sorgomol. One sorgomol-producing cotton cultivar had the same SL profile as sorghum in the feeding experiments. Another cotton cultivar converted CLA to 5-DS, strigol, and strigyl acetate. Further, 5-DS was converted to strigol and strigyl acetate. Moonseed converted CLA to strigol, but not to 5-DS. The plant did not convert 5-DS to strigol, suggesting that 5-DS is not a precursor of strigol in moonseed. Similarly, 4-deoxyorobanchol was not a precursor of orobanchol in cowpea. Further, sunflower converted CLA to methyl carlactonoate and heliolactone. These results indicated that the biosynthetic pathways of hydroxy SLs do not necessarily involve their respective deoxy SL precursors.
Strigolactones (SLs) are a class of plant hormones which regulate shoot branching and function as host recognition signals for symbionts and parasites in the rhizosphere. However, steps in SL biosynthesis after carlactone (CL) formation remain elusive. This study elucidated the common and diverse functions of MAX1 homologs which catalyze CL oxidation. We have reported previously that ArabidopsisMAX1 converts CL to carlactonoic acid (CLA), whereas a rice MAX1 homolog has been shown to catalyze the conversion of CL to 4-deoxyorobanchol (4DO). To determine which reaction is conserved in the plant kingdom, we investigated the enzymatic function of MAX1 homologs in Arabidopsis, rice, maize, tomato, poplar and Selaginella moellendorffii. The conversion of CL to CLA was found to be a common reaction catalyzed by MAX1 homologs, and MAX1s can be classified into three types: A1-type, converting CL to CLA; A2-type, converting CL to 4DO via CLA; and A3-type, converting CL to CLA and 4DO to orobanchol. CLA was detected in root exudates from poplar and Selaginella, but not ubiquitously in other plants examined in this study, suggesting its role as a species-specific signal in the rhizosphere. This study provides new insights into the roles of MAX1 in endogenous and rhizosphere signaling.
Strigolactones (SLs) are rhizosphere signalling molecules exuded by plants that induce seed germination of root parasitic weeds and hyphal branching of arbuscular mycorrhiza. They are also phytohormones regulating plant architecture. MORE AXILLARY GROWTH 1 (MAX1) and its homologs encode cytochrome P450 (CYP) enzymes that catalyse the conversion of the strigolactone precursor carlactone to canonical strigolactones in rice (Oryza sativa), and to an SL-like compound in Arabidopsis. Here, we characterized the tomato (Solanum lycopersicum) MAX1 homolog, SlMAX1. The targeting induced local lesions in genomes method was used to obtain Slmax1 mutants that exhibit strongly reduced production of orobanchol, solanacol and didehydro-orobanchol (DDH) isomers. This results in a severe strigolactone mutant phenotype in vegetative and reproductive development. Transient expression of SlMAX1 - together with SlD27, SlCCD7 and SlCCD8 - in Nicotiana benthamiana showed that SlMAX1 catalyses the formation of carlactonoic acid from carlactone. Plant feeding assays showed that carlactone, but not 4-deoxy-orobanchol, is the precursor of orobanchol, which in turn is the precursor of solanacol and two of the three DDH isomers. Inhibitor studies suggest that a 2-oxoglutarate-dependent dioxygenase is involved in orobanchol biosynthesis from carlactone and that the formation of solanacol and DDH isomers from orobanchol is catalysed by CYPs.
Strigolactones are a new class of phytohormones synthesized from carotenoids via carlactone. The complex structure of carlactone is not easily deducible from its precursor, a cis-configured beta-carotene cleavage product, and is thus formed via a poorly understood series of reactions and molecular rearrangements, all catalyzed by only one enzyme, the carotenoid cleavage dioxygenase 8 (CCD8). Moreover, the reactions leading to carlactone are expected to form a second, yet unidentified product. In this study, we used (13) C and (18) O-labeling to shed light on the reactions catalyzed by CCD8. The characterization of the resulting carlactone by LC-MS and NMR, and the identification of the assumed, less accessible second product allowed us to formulate a minimal reaction mechanism for carlactone generation.
Title: Carlactone-type strigolactones and their synthetic analogues as inducers of hyphal branching in arbuscular mycorrhizal fungi Mori N, Nishiuma K, Sugiyama T, Hayashi H, Akiyama K Ref: Phytochemistry, 130:90, 2016 : PubMed
Hyphal branching in the vicinity of host roots is a host recognition response of arbuscular mycorrhizal fungi. This morphological event is elicited by strigolactones. Strigolactones are carotenoid-derived terpenoids that are synthesized from carlactone and its oxidized derivatives. To test the possibility that carlactone and its oxidized derivatives might act as host-derived precolonization signals in arbuscular mycorrhizal symbiosis, carlactone, carlactonoic acid, and methyl carlactonoate as well as monohydroxycarlactones, 4-, 18-, and 19-hydroxycarlactones, were synthesized chemically and evaluated for hyphal branching-inducing activity in germinating spores of the arbuscular mycorrhizal fungus Gigaspora margarita. Hyphal branching activity was found to correlate with the degree of oxidation at C-19 methyl. Carlactone was only weakly active (100 ng/disc), whereas carlactonoic acid showed comparable activity to the natural canonical strigolactones such as strigol and sorgomol (100 pg/disc). Hydroxylation at either C-4 or C-18 did not significantly affect the activity. A series of carlactone analogues, named AD ester and AA'D diester, was synthesized by reacting formyl Meldrum's acid with benzyl, cyclohexylmethyl, and cyclogeranyl alcohols (the A-ring part), followed by coupling of the potassium enolates of the resulting formylacetic esters with the D-ring butenolide. AD ester analogues exhibited moderate activity (1 ng-100 pg/disc), while AA'D diester analogues having cyclohexylmethyl and cyclogeranyl groups were highly active on the AM fungus (10 pg/disc). These results indicate that the oxidation of methyl to carboxyl at C-19 in carlactone is a prerequisite but BC-ring formation is not essential to show hyphal branching activity comparable to that of canonical strigolactones.
Strigolactones (SLs) stimulate seed germination of root parasitic plants and induce hyphal branching of arbuscular mycorrhizal fungi in the rhizosphere. In addition, they have been classified as a new group of plant hormones essential for shoot branching inhibition. It has been demonstrated thus far that SLs are derived from carotenoid via a biosynthetic precursor carlactone (CL), which is produced by sequential reactions of DWARF27 (D27) enzyme and two carotenoid cleavage dioxygenases CCD7 and CCD8. We previously found an extreme accumulation of CL in the more axillary growth1 (max1) mutant of Arabidopsis, which exhibits increased lateral inflorescences due to SL deficiency, indicating that CL is a probable substrate for MAX1 (CYP711A1), a cytochrome P450 monooxygenase. To elucidate the enzymatic function of MAX1 in SL biosynthesis, we incubated CL with a recombinant MAX1 protein expressed in yeast microsomes. MAX1 catalyzed consecutive oxidations at C-19 of CL to convert the C-19 methyl group into carboxylic acid, 9-desmethyl-9-carboxy-CL [designated as carlactonoic acid (CLA)]. We also identified endogenous CLA and its methyl ester [methyl carlactonoate (MeCLA)] in Arabidopsis plants using LC-MS/MS. Although an exogenous application of either CLA or MeCLA suppressed the growth of lateral inflorescences of the max1 mutant, MeCLA, but not CLA, interacted with Arabidopsis thaliana DWARF14 (AtD14) protein, a putative SL receptor, as shown by differential scanning fluorimetry and hydrolysis activity tests. These results indicate that not only known SLs but also MeCLA are biologically active in inhibiting shoot branching in Arabidopsis.
Strigolactones (SLs) are a class of terpenoid plant hormones that regulate shoot branching as well as being known as root-derived signals for symbiosis and parasitism. SL has tricyclic-lactone (ABC-ring) and methyl butenolide (D-ring), and they are connected through an enol ether bridge. Recently, a putative biosynthetic intermediate called carlactone (CL), of which carbon skeleton is in part similar to those of SLs, was identified by biochemical analysis of three biosynthetic enzymes, DWARF27, CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7), and CCD8 in vitro. However, CL has never been identified from plant tissues, and the conversion of CL to SLs has not been proven in vivo. To address these questions, we chemically synthesized (13)C-labeled CL. We show that (13)C-labeled CL is converted to (-)-[(13)C]-2'-epi-5-deoxystrigol ((-)-2'-epi-5DS) and [(13)C]-orobanchol, endogenous SLs in rice, in the dwarf10 mutant, which is defective in CCD8. In addition, we successfully identified endogenous CL by using liquid chromatography-quadrupole/time-of-flight tandem mass spectrometry in rice and Arabidopsis. Furthermore, we determined the absolute stereochemistry of endogenous CL to be (11R)-configuration, which is the same as that of (-)-2'-epi-5DS at the corresponding position. Feeding experiments showed that only the (11R)-isomer of CL, but not the (11S)-isomer, was converted to (-)-2'-epi-5DS in vivo. Taken together, our data provide conclusive evidence that CL is an endogenous SL precursor that is stereospecifically recognized in the biosynthesis pathway.
Root exudates of sunflower (Helianthus annuus L.) line 2607A induced germination of seeds of root parasitic weeds Striga hermonthica, Orobanche cumana, Orobanche minor, Orobanche crenata, and Phelipanche aegyptiaca. Bioassay-guided purification led to the isolation of a germination stimulant designated as heliolactone. FT-MS analysis indicated a molecular formula of C20H24O6. Detailed NMR spectroscopic studies established a methylfuranone group, a common structural component of strigolactones connected to a methyl ester of a C14 carboxylic acid via an enol ether bridge. The cyclohexenone ring is identical to that of 3-oxo-alpha-ionol and the other part of the molecule corresponds to an oxidized carlactone at C-19. It is a carlactone-type molecule and functions as a germination stimulant for seeds of root parasitic weeds. Heliolactone induced seed germination of the above mentioned root parasitic weeds, while dehydrocostus lactone and costunolide, sesquiterpene lactones isolated from sunflower root exudates, were effective only on O. cumana and O. minor. Heliolactone production in aquacultures increased when sunflower seedlings were grown hydroponically in tap water and decreased on supplementation of the culture with either phosphorus or nitrogen. Costunolide, on the other hand, was detected at a higher concentration in well-nourished medium as opposed to nutrient-deficient media, thus suggesting a contrasting contribution of heliolactone and the sesquiterpene lactone to the germination of O. cumana under different soil fertility levels.
Strigolactones (SLs) are a class of phytohormones and rhizosphere signaling compounds with high structural diversity. Three enzymes, carotenoid isomerase DWARF27 and carotenoid cleavage dioxygenases CCD7 and CCD8, were previously shown to convert all-trans-beta-carotene to carlactone (CL), the SL precursor. However, how CL is metabolized to SLs has remained elusive. Here, by reconstituting the SL biosynthetic pathway in Nicotiana benthamiana, we show that a rice homolog of Arabidopsis More Axillary Growth 1 (MAX1), encodes a cytochrome P450 CYP711 subfamily member that acts as a CL oxidase to stereoselectively convert CL into ent-2'-epi-5-deoxystrigol (B-C lactone ring formation), the presumed precursor of rice SLs. A protein encoded by a second rice MAX1 homolog then catalyzes the conversion of ent-2'-epi-5-deoxystrigol to orobanchol. We therefore report that two members of CYP711 enzymes can catalyze two distinct steps in SL biosynthesis, identifying the first enzymes involved in B-C ring closure and a subsequent structural diversification step of SLs.
Strigolactone hormones are derived from carotenoids via carlactone, and act through the alpha/beta-hydrolase D14 and the F-box protein D3/MAX2 to repress plant shoot branching. While MAX2 is also necessary for normal seedling development, D14 and the known strigolactone biosynthesis genes are not, raising the question of whether endogenous, canonical strigolactones derived from carlactone have a role in seedling morphogenesis. Here, we report the chemical synthesis of the strigolactone precursor carlactone, and show that it represses Arabidopsis shoot branching and influences leaf morphogenesis via a mechanism that is dependent on the cytochrome P450 MAX1. In contrast, both physiologically active Z-carlactone and the non-physiological E isomer exhibit similar weak activity in seedlings, and predominantly signal through D14 rather than its paralogue KAI2, in a MAX2-dependent but MAX1-independent manner. KAI2 is essential for seedling morphogenesis, and hence this early-stage development employs carlactone-independent morphogens for which karrikins from wildfire smoke are specific surrogates. While the commonly employed synthetic strigolactone GR24 acts non-specifically through both D14 and KAI2, carlactone is a specific effector of strigolactone signalling that acts through MAX1 and D14.
Strigolactones, phytohormones with diverse signaling activities, have a common structure consisting of two lactones connected by an enol-ether bridge. Strigolactones derive from carotenoids via a pathway involving the carotenoid cleavage dioxygenases 7 and 8 (CCD7 and CCD8) and the iron-binding protein D27. We show that D27 is a beta-carotene isomerase that converts all-trans-beta-carotene into 9-cis-beta-carotene, which is cleaved by CCD7 into a 9-cis-configured aldehyde. CCD8 incorporates three oxygens into 9-cis-beta-apo-10'-carotenal and performs molecular rearrangement, linking carotenoids with strigolactones and producing carlactone, a compound with strigolactone-like biological activities. Knowledge of the structure of carlactone will be crucial for understanding the biology of strigolactones and may have applications in combating parasitic weeds.