Carbamazepine is an antiepileptic drug which is metabolized by CYP3A4 into carbamazepine-10,11-epoxide. This metabolite is then detoxified by epoxide hydrolase. As carbamazepine-10,11-epoxide has been associated with neurotoxicity. It has a role as a marine xenobiotic metabolite, a drug metabolite and an allergen. It is an epoxide, a member of ureas and a dibenzoazepine
12 moreTitle: Prediction of drug-drug interactions with carbamazepine-10,11-epoxide using a new in vitro assay for epoxide hydrolase inhibition Rosa M, Bonnaillie P, Chanteux H Ref: Xenobiotica, 46:1076, 2016 : PubMed
1. Carbamazepine is an antiepileptic drug which is metabolized by CYP3A4 into carbamazepine-10,11-epoxide. This metabolite is then detoxified by epoxide hydrolase. As carbamazepine-10,11-epoxide has been associated with neurotoxicity, it is critical to identify whether a new antiepileptic drug has the potential to inhibit epoxide hydrolase and therefore increase carbamazepine-10,11-epoxide plasma levels. 2. In this study, an in vitro assay was developed to evaluate epoxide hydrolase activity by using carbamazepine-10,11-epoxide as probe substrate. The ability of this assay to predict drug-drug interactions (DDI) at the epoxide hydrolase level was also investigated. 3. To this aim, known inhibitors of epoxide hydrolase for which in vivo data are available were used. Firstly, carbamazepine-10,11-epoxide hydrolase activity was determined in liver microsomes, cytosol and hepatocytes. Thereafter, the IC50 of epoxide hydrolase inhibitors (progabide, valproic acid, valpromide and valnoctamide) was determined in liver microsomes and hepatocytes. Finally, prediction of AUC increase was performed using the in vitro data generated. 4. Interestingly, epoxide hydrolase activity was found to be much higher in human hepatocytes compared to liver microsomes/cytosol. Even though assessed on a limited number of compounds, this study demonstrated that the use of hepatocytes seems to be a more relevant model to assess and predict DDI at the epoxide hydrolase level.
OBJECTIVE: Microsomal epoxide hydrolase (mEH) is an enzyme that detoxifies reactive epoxides and catalyzes the biotransformation of carbamazepine-10,11-epoxide (CBZ-epoxide) to carbamazepine-10,11-diol (CBZ-diol). Utilizing single nucleotide polymorphisms (SNPs) of the EPHX1 gene encoding mEH, we identified the haplotypes of EPHX1 blocks and investigated the association between the block haplotypes and CBZ-epoxide metabolism. METHODS: SNPs of EPHX1 were analyzed by means of polymerase chain reaction amplification and DNA sequencing using DNA extracted from the blood leukocytes of 96 Japanese epileptic patients, including 58 carbamazepine-administered patients. The plasma concentrations of CBZ and its four metabolites were determined using high-performance liquid chromatography. RESULTS: From sequencing all 9 exons and their surrounding introns, 29 SNPs were found in EPHX1. The SNPs were separated into three blocks on the basis of linkage disequilibrium, and the block haplotype combinations (diplotypes) were assigned. Using plasma CBZ-diol/CBZ-epoxide ratios (diol/epoxide ratios) indicative of the mEH activity, the effects of the diplotypes in each EPHX1 block were analyzed on CBZ-epoxide metabolism. In block 2, the diol/epoxide ratios increased significantly depending on the number of haplotype *2 bearing Y113H (P=0.0241). In block 3, the ratios decreased depending on the number of haplotype *2 bearing H139R (P=0.0351). Also, an increasing effect of a *1 subtype, *1c, was observed on the ratio. CONCLUSION: These results show that some EPHX1 haplotypes are associated with altered CBZ-epoxide metabolism. This is the first report on the haplotype structures of EPHX1 and their potential in vivo effects.
        
Title: Elevation of carbamazepine-10,11-epoxide by quetiapine Fitzgerald BJ, Okos AJ Ref: Pharmacotherapy, 22:1500, 2002 : PubMed
A 52-year-old woman and a 56-year-old man who were receiving carbamazepine experienced markedly elevated levels of its active metabolite, carbamazepine-10,11-epoxide (CBZ-E), after starting quetiapine therapy. The CBZ-E:carbamazepine ratio increased 3-4-fold in each patient. Levels of CBZ-E returned to baseline after discontinuing this drug combination. The metabolite can accumulate and cause neurotoxicity. The woman experienced ataxia and agitation while receiving quetiapine, which resolved after carbamazepine was switched to oxcarbazepine. The man was asymptomatic. To our knowledge, these are the first two case reports describing this interaction. Quetiapine may inhibit epoxide hydrolase and/or glucuronidation of carbamazepine-10,11-trans-diol in the same way as valproate and possibly lamotrigine do. If carbamazepine and quetiapine are administered concurrently, clinicians should consider monitoring CBZ-E concentrations.
        
12 lessTitle: Pharmacokinetics of the CYP3A4 and CYP2B6 Inducer Carbamazepine and Its Drug-Drug Interaction Potential: A Physiologically Based Pharmacokinetic Modeling Approach Fuhr LM, Marok FZ, Hanke N, Selzer D, Lehr T Ref: Pharmaceutics, 13:270, 2021 : PubMed
The anticonvulsant carbamazepine is frequently used in the long-term therapy of epilepsy and is a known substrate and inducer of cytochrome P450 (CYP) 3A4 and CYP2B6. Carbamazepine induces the metabolism of various drugs (including its own); on the other hand, its metabolism can be affected by various CYP inhibitors and inducers. The aim of this work was to develop a physiologically based pharmacokinetic (PBPK) parent-metabolite model of carbamazepine and its metabolite carbamazepine-10,11-epoxide, including carbamazepine autoinduction, to be applied for drug-drug interaction (DDI) prediction. The model was developed in PK-Sim, using a total of 92 plasma concentration-time profiles (dosing range 50-800 mg), as well as fractions excreted unchanged in urine measurements. The carbamazepine model applies metabolism by CYP3A4 and CYP2C8 to produce carbamazepine-10,11-epoxide, metabolism by CYP2B6 and UDP-glucuronosyltransferase (UGT) 2B7 and glomerular filtration. The carbamazepine-10,11-epoxide model applies metabolism by epoxide hydroxylase 1 (EPHX1) and glomerular filtration. Good DDI performance was demonstrated by the prediction of carbamazepine DDIs with alprazolam, bupropion, erythromycin, efavirenz and simvastatin, where 14/15 DDI AUC(last) ratios and 11/15 DDI C(max) ratios were within the prediction success limits proposed by Guest et al. The thoroughly evaluated model will be freely available in the Open Systems Pharmacology model repository.
AIMS: Carbamazepine can cause hypersensitivity reactions in ~10% of patients. An immunogenic effect can be produced by the electrophilic 10,11-epoxide metabolite but not by carbamazepine. Hypothetically, certain single nucleotide polymorphisms might increase the formation of immunogenic metabolites, leading ultimately to hypersensitivity reactions. This study explores the role of clinical and genetic factors in the pharmacokinetics (PK) of carbamazepine and 3 metabolites known to be chemically reactive or formed through reactive intermediates. METHODS: A combination of rich and sparse PK samples were collected from healthy volunteers and epilepsy patients. All subjects were genotyped for 20 single nucleotide polymorphisms in 11 genes known to be involved in the metabolism or transport of carbamazepine and carbamazepine 10,11-epoxide. Nonlinear mixed effects modelling was used to build a population-PK model. RESULTS: In total, 248 observations were collected from 80 subjects. A 1-compartment PK model with first-order absorption and elimination best described the parent carbamazepine data, with a total clearance of 1.96 L/h, central distribution volume of 164 L and absorption rate constant of 0.45 h(-1) . Total daily dose and coadministration of phenytoin were significant covariates for total clearance of carbamazepine. EPHX1-416G/G genotype was a significant covariate for the clearance of carbamazepine 10,11-epoxide. CONCLUSION: Our data indicate that carbamazepine clearance was affected by total dose and phenytoin coadministration, but not by genetic factors, while carbamazepine 10,11-epoxide clearance was affected by a variant in the microsomal epoxide hydrolase gene. A much larger sample size would be required to fully evaluate the role of genetic variation in carbamazepine pharmacokinetics, and thereby predisposition to carbamazepine hypersensitivity.
        
Title: Different EPHX1 methylation levels in promoter area between carbamazepine-resistant epilepsy group and carbamazepine-sensitive epilepsy group in Chinese population Lv Y, Zheng X, Shi M, Wang Z, Cui L Ref: BMC Neurol, 19:114, 2019 : PubMed
BACKGROUND: Epigenetics underlying refractory epilepsy is poorly understood. DNA methylation may affect gene expression in epilepsy patients without affecting DNA sequences. Herein, we investigated the association between Carbamazepine-resistant (CBZ-resistant) epilepsy and EPHX1 methylation in a northern Han Chinese population, and conducted an analysis of clinical risk factors for CBZ-resistant epilepsy. METHODS: Seventy-five northern Han Chinese patients participated in this research. 25 cases were CBZ-resistant epilepsy, 25 cases were CBZ-sensitive epilepsy and the remaining 25 cases were controls. Using a CpG searcher was to make a prediction of CpG islands; bisulfite sequencing PCR (BSP) was applied to test the methylation of EPHX1. We then did statistical analysis between clinical parameters and EPHX1 methylation. RESULTS: There was no difference between CBZ-resistant patients, CBZ-sensitive patients and healthy controls in matched age and gender. However, a significant difference of methylation levels located in NC_000001.11 (225,806,929.....225807108) of the EPHX1 promoter was found in CBZ-resistant patients, which was much higher than CBZ-sensitive and controls. Additionally, there was a significant positive correlation between seizure frequency, disease course and EPHX1 methylation in CBZ-resistant group. CONCLUSION: Methylation levels in EPHX1 promoter associated with CBZ-resistant epilepsy significantly. EPHX1 methylation may be the potential marker for CBZ resistance prior to the CBZ therapy and potential target for treatments.
        
Title: Association between EPHX1 polymorphisms and carbamazepine metabolism in epilepsy: a meta-analysis Zhao GX, Shen ML, Zhang Z, Wang P, Xie CX, He GH Ref: Int J Clin Pharm, 41:1414, 2019 : PubMed
Background: EPHX1 gene polymorphisms were recently acknowledged as an important source of individual variability in carbamazepine metabolism, but the result of that association still remains controversial. Aim of the review To obtain a more precise estimation of the associations between EPHX1 polymorphisms and carbamazepine metabolism and resistance. Methods: The PubMed, EMBASE, Cochrane library, Chinese National Knowledge Infrastructure, Chinese Science and Technique Journals Database, China Biology Medicine disc and Wan fang Database were searched for appropriate studies regarding the rs1051740 and rs2234922 polymorphisms of EPHX1 up to September 2019. The meta-analysis was carried out using the Review Manager 5.3 software. The mean difference and 95% confidence interval were applied to assess the strength of the relationship. Results: A total of 7 studies involving 1118 related epilepsy patients were included. EPHX1 rs1051740 polymorphism was significantly associated with adjusted concentrations of both carbamazepine (CC vs. TT: P = 0.02; CC vs. CT + TT: P = 0.005) and carbamazepine-10,11-epoxide (CC vs. CT + TT: P = 0.03). Furthermore, EPHX1 rs2234922 polymorphism was also observed to be significantly associated with decreased adjusted concentrations of carbamazepine-10,11-trans dihydrodiol (GG vs. GA + AA: P = 0.04) and CBZD:CBZE ratio (GG vs. AA: P = 0.008; GG vs. GA + AA: P = 0.0008). Nevertheless, the pooled analysis showed that the EPHX1 polymorphisms had no significant effect on CBZ resistance. Conclusion EPHX1 rs1051740 and rs2234922 polymorphisms may affect the carbamazepine metabolism; but carbamazepine resistance was not related to any of the single nucleotide polymorphisms investigated. These findings provided further evidence for individualized therapy of epilepsy patients in clinics.
        
Title: Prediction of drug-drug interactions with carbamazepine-10,11-epoxide using a new in vitro assay for epoxide hydrolase inhibition Rosa M, Bonnaillie P, Chanteux H Ref: Xenobiotica, 46:1076, 2016 : PubMed
1. Carbamazepine is an antiepileptic drug which is metabolized by CYP3A4 into carbamazepine-10,11-epoxide. This metabolite is then detoxified by epoxide hydrolase. As carbamazepine-10,11-epoxide has been associated with neurotoxicity, it is critical to identify whether a new antiepileptic drug has the potential to inhibit epoxide hydrolase and therefore increase carbamazepine-10,11-epoxide plasma levels. 2. In this study, an in vitro assay was developed to evaluate epoxide hydrolase activity by using carbamazepine-10,11-epoxide as probe substrate. The ability of this assay to predict drug-drug interactions (DDI) at the epoxide hydrolase level was also investigated. 3. To this aim, known inhibitors of epoxide hydrolase for which in vivo data are available were used. Firstly, carbamazepine-10,11-epoxide hydrolase activity was determined in liver microsomes, cytosol and hepatocytes. Thereafter, the IC50 of epoxide hydrolase inhibitors (progabide, valproic acid, valpromide and valnoctamide) was determined in liver microsomes and hepatocytes. Finally, prediction of AUC increase was performed using the in vitro data generated. 4. Interestingly, epoxide hydrolase activity was found to be much higher in human hepatocytes compared to liver microsomes/cytosol. Even though assessed on a limited number of compounds, this study demonstrated that the use of hepatocytes seems to be a more relevant model to assess and predict DDI at the epoxide hydrolase level.
        
Title: Polymorphic Variants of SCN1A and EPHX1 Influence Plasma Carbamazepine Concentration, Metabolism and Pharmacoresistance in a Population of Kosovar Albanian Epileptic Patients Daci A, Beretta G, Vllasaliu D, Shala A, Govori V, Norata GD, Krasniqi S Ref: PLoS ONE, 10:e0142408, 2015 : PubMed
AIM: The present study aimed to evaluate the effects of gene variants in key genes influencing pharmacokinetic and pharmacodynamic of carbamazepine (CBZ) on the response in patients with epilepsy. MATERIALS & METHODS: Five SNPs in two candidate genes influencing CBZ transport and metabolism, namely ABCB1 or EPHX1, and CBZ response SCN1A (sodium channel) were genotyped in 145 epileptic patients treated with CBZ as monotherapy and 100 age and sex matched healthy controls. Plasma concentrations of CBZ, carbamazepine-10,11-epoxide (CBZE) and carbamazepine-10,11-trans dihydrodiol (CBZD) were determined by HPLC-UV-DAD and adjusted for CBZ dosage/kg of body weight. RESULTS: The presence of the SCN1A IVS5-91G>A variant allele is associated with increased epilepsy susceptibility. Furthermore, carriers of the SCN1A IVS5-91G>A variant or of EPHX1 c.337T>C variant presented significantly lower levels of plasma CBZ compared to carriers of the common alleles (0.71 +/- 0.28 vs 1.11+/-0.69 mug/mL per mg/Kg for SCN1A IVS5-91 AA vs GG and 0.76 +/- 0.16 vs 0.94 +/- 0.49 mug/mL per mg/Kg for EPHX1 c.337 CC vs TT; P<0.05 for both). Carriers of the EPHX1 c.416A>G showed a reduced microsomal epoxide hydrolase activity as reflected by a significantly decreased ratio of CBZD to CBZ (0.13 +/- 0.08 to 0.26 +/- 0.17, p<0.05) also of CBZD to CBZE (1.74 +/- 1.06 to 3.08 +/- 2.90; P<0.05) and CDRCBZD (0.13 +/- 0.08 vs 0.24 +/- 0.19 mug/mL per mg/Kg; P<0.05). ABCB1 3455C>T SNP and SCN1A 3148A>G variants were not associated with significant changes in CBZ pharmacokinetic. Patients resistant to CBZ treatment showed increased dosage of CBZ (657 +/- 285 vs 489 +/- 231 mg/day; P<0.001) but also increased plasma levels of CBZ (9.84 +/- 4.37 vs 7.41 +/- 3.43 mug/mL; P<0.001) compared to patients responsive to CBZ treatment. CBZ resistance was not related to any of the SNPs investigated. CONCLUSIONS: The SCN1A IVS5-91G>A SNP is associated with susceptibility to epilepsy. SNPs in EPHX1 gene are influencing CBZ metabolism and disposition. CBZ plasma levels are not an indicator of resistance to the therapy.
OBJECTIVE: Microsomal epoxide hydrolase (mEH) is an enzyme that detoxifies reactive epoxides and catalyzes the biotransformation of carbamazepine-10,11-epoxide (CBZ-epoxide) to carbamazepine-10,11-diol (CBZ-diol). Utilizing single nucleotide polymorphisms (SNPs) of the EPHX1 gene encoding mEH, we identified the haplotypes of EPHX1 blocks and investigated the association between the block haplotypes and CBZ-epoxide metabolism. METHODS: SNPs of EPHX1 were analyzed by means of polymerase chain reaction amplification and DNA sequencing using DNA extracted from the blood leukocytes of 96 Japanese epileptic patients, including 58 carbamazepine-administered patients. The plasma concentrations of CBZ and its four metabolites were determined using high-performance liquid chromatography. RESULTS: From sequencing all 9 exons and their surrounding introns, 29 SNPs were found in EPHX1. The SNPs were separated into three blocks on the basis of linkage disequilibrium, and the block haplotype combinations (diplotypes) were assigned. Using plasma CBZ-diol/CBZ-epoxide ratios (diol/epoxide ratios) indicative of the mEH activity, the effects of the diplotypes in each EPHX1 block were analyzed on CBZ-epoxide metabolism. In block 2, the diol/epoxide ratios increased significantly depending on the number of haplotype *2 bearing Y113H (P=0.0241). In block 3, the ratios decreased depending on the number of haplotype *2 bearing H139R (P=0.0351). Also, an increasing effect of a *1 subtype, *1c, was observed on the ratio. CONCLUSION: These results show that some EPHX1 haplotypes are associated with altered CBZ-epoxide metabolism. This is the first report on the haplotype structures of EPHX1 and their potential in vivo effects.
        
Title: Elevation of carbamazepine-10,11-epoxide by quetiapine Fitzgerald BJ, Okos AJ Ref: Pharmacotherapy, 22:1500, 2002 : PubMed
A 52-year-old woman and a 56-year-old man who were receiving carbamazepine experienced markedly elevated levels of its active metabolite, carbamazepine-10,11-epoxide (CBZ-E), after starting quetiapine therapy. The CBZ-E:carbamazepine ratio increased 3-4-fold in each patient. Levels of CBZ-E returned to baseline after discontinuing this drug combination. The metabolite can accumulate and cause neurotoxicity. The woman experienced ataxia and agitation while receiving quetiapine, which resolved after carbamazepine was switched to oxcarbazepine. The man was asymptomatic. To our knowledge, these are the first two case reports describing this interaction. Quetiapine may inhibit epoxide hydrolase and/or glucuronidation of carbamazepine-10,11-trans-diol in the same way as valproate and possibly lamotrigine do. If carbamazepine and quetiapine are administered concurrently, clinicians should consider monitoring CBZ-E concentrations.
        
Title: Interindividual and interspecies variation in hepatic microsomal epoxide hydrolase activity: studies with cis-stilbene oxide, carbamazepine 10, 11-epoxide and naphthalene Kitteringham NR, Davis C, Howard N, Pirmohamed M, Park BK Ref: Journal of Pharmacology & Experimental Therapeutics, 278:1018, 1996 : PubMed
Microsomal epoxide hydrolase (HYL1) is a single-gene enzyme responsible for the hydrolysis of epoxides derived from the oxidative metabolism of xenobiotics. Variation in HYL1, therefore, may be an important determinant of drug toxicity. We have investigated HYL1 enzyme kinetics in six different species including man, for which a liver bank genotyped for polymorphisms in exons 3 and 4 of the HYL1 gene was used. Activity was measured by radiochromatography with high specific activity radiolabeled substrates, cis-stilbene oxide (CSO) and carbamazepine 10,11-epoxide (CBZ-E). In addition, naphthalene was used to investigate the hydrolysis of an epoxide (naphthalene 1,2-epoxide [N-E] generated in situ. There was marked species variation in enzyme activity that was substrate dependent. CSO was rapidly hydrolyzed by microsomes from all species, the rank order of specific activity being human > rabbit > dog > rat > hamster > mouse. In contrast, hydrolysis of CBZ-E was only observed with human liver microsomes. CBZ-E was only a weak (IC50 = 1 mM) inhibitor of CSO hydrolysis. The hydrolysis of N-E, determined as the diol-to-total metabolite ratio, was human > rabbit > dog > hamster > mouse > rat. Intraspecies variation in man was 4-fold, 7-fold and 2-fold for CSO, CBZ-E and N-E, respectively: none of this variation could be directly accounted for by the HYL1 polymorphisms in exons 3 and 4. These data emphasize the need for careful toxicokinetic evaluation of species used in the safety evaluation of compounds likely to form epoxide intermediates in vivo.
        
Title: In vivo and in vitro correlation of microsomal epoxide hydrolase inhibition by progabide Kroetz DL, Loiseau P, Guyot M, Levy RH Ref: Clinical Pharmacology & Therapeutics, 54:485, 1993 : PubMed
Progabide was investigated as a potential inhibitor of microsomal epoxide hydrolase as a result of reports of elevated levels of carbamazepine-10,11-epoxide after coadministration of progabide and carbamazepine to patients with epilepsy. The formation clearance of carbamazepine transdihydrodiol after administration of carbamazepine-10,11-epoxide to healthy volunteers was decreased 26% by progabide. Therapeutic concentrations of progabide inhibited S (+)-styrene oxide hydrolysis in human liver microsomes (inhibition constant [Ki] = 1.9 mumol/L) and purified human liver microsomal epoxide hydrolase (Ki = 4.4 mumol/L). A mixed competitive and noncompetitive mechanism of inhibition best described the effect of progabide on microsomal epoxide hydrolase; the most potent inhibition was competitive. A similar model described the inhibition by the acid metabolite of progabide, although inhibitory concentrations are higher than concentrations observed after progabide therapy. An excellent agreement between the in vivo and in vitro inhibitory potencies of progabide suggests that potential inhibitors of this important detoxification enzyme can be predicted in vitro.
An impairment or hereditary defect in microsomal epoxide hydrolase is considered a possible risk factor for drug and chemical toxicity. However, nothing is known about variability of in vivo epoxide hydrolase activity in humans. Our objectives were to develop and test a simple pharmacokinetic approach for measuring microsomal epoxide hydrolase activity in a population. After administration of carbamazepine-10,11-epoxide (100 mg), oral clearance showed a nearly linear relationship to the log (transdihydrodiol/epoxide) urine ratio in the 24- to 36-hour interval (log metabolic ratio). Intrasubject variability was assessed by administering the epoxide twice to 13 subjects (1- to 4-month interval); the log metabolic ratio did not change significantly (mean difference, 11%; paired t test, p = 0.79). In 110 healthy white adults, the log metabolic ratio ranged from 1.28 to 2.05 (mean +/- SD, 1.68 +/- 0.155). Outliers indicating enzyme-deficient phenotypes were not observed, and the frequency distribution was unimodal normal. The log metabolic ratio detected pronounced inhibition of epoxide hydrolase by valpromide (six subjects; median ratio, 0.91) and induction by phenobarbital/phenytoin (six subjects; median ratio, 2.42). We conclude that distribution of microsomal epoxide hydrolase activity in a study group can be measured pharmacokinetically by use of carbamazepine epoxide.
Six patients stabilized with carbamazepine (CBZ) therapy received an 8-day "add-on" supplement of valnoctamide (VCD), a tranquilizer available over the counter (OTC) in several European countries that exhibits promising anticonvulsant activity in animal models. During VCD intake, serum levels of the active CBZ metabolite, carbamazepine-10,11-epoxide (CBZ-E), increased fivefold from 1.5 +/- 0.7 micrograms/ml at baseline to 7.4 +/- 4.4 micrograms/ml after 4 days of VCD therapy and 7.7 +/- 3.1 micrograms/ml after 7 days of VCD therapy (means +/- SD, p < 0.01). In 4 patients, the increase in serum CBZ-E levels was associated with clinical signs of CBZ intoxication. CBZ-E levels returned to baseline after VCD therapy was discontinued. Serum CBZ levels remained stable throughout the study. The interaction observed in this study is similar to that described in patients treated with CBZ and valpromide (VPD, an isomer of VCD). In a mechanistic study, therapeutic concentrations of VCD inhibited hydrolysis of styrene oxide in human liver microsome preparations. Thus, VCD is a potent inhibitor of microsomal epoxide hydrolase (IC50 15 microM). There was a striking similarity between in vitro and in vivo inhibition potencies. In this study, VCD clearance was higher in epileptic patients (treated with CBZ) than in healthy subjects.
        
Title: Heterologous expression of human microsomal epoxide hydrolase in Saccharomyces cerevisiae. Study of the valpromide-carbamazepine epoxide interaction Eugster HP, Sengstag C, Hinnen A, Meyer UA, Wurgler FE Ref: Biochemical Pharmacology, 42:1367, 1991 : PubMed
A cDNA of human microsomal epoxide hydrolase (hmEH) was constitutively and inducibly expressed in Saccharomyces cerevisiae. The heterologous enzyme was located mainly in the microsomal fraction of yeast cells. Yeast microsomes containing hmEH exerted styrene oxide hydrolase activity (Km = 300 microM; Vmax = 22 nmol/mg min) as well as carbamazepine epoxide hydrolase activity. The hmEH catalysed exclusively the formation of carbamazepine-10,11-transdihydrodiol, since no carbamazepine-10,11-cisdihydrodiol was detected. Inhibition studies using these microsomes revealed unequivocally hmEH as the target for inhibition by the antiepileptic drug valpromide. A Ki value of 27 microM was determined for the inhibitor valpromide with styrene oxide as substrate. For carbamazepine epoxide, a Ki value of 8.6 microM was obtained, which is well in line with data published for hmEH determined with human liver microsomes. Our results demonstrate the potential of heterologous gene expression in S. cerevisiae and its application to the in vitro study of pharmacological and toxicological problems.
        
Title: Inhibition of human liver microsomal epoxide hydrolase by valproate and valpromide: in vitro/in vivo correlation Kerr BM, Rettie AE, Eddy AC, Loiseau P, Guyot M, Wilensky AJ, Levy RH Ref: Clinical Pharmacology & Therapeutics, 46:82, 1989 : PubMed
On the basis of drug interactions with carbamazepine epoxide, it has been hypothesized that valproic acid and valpromide are inhibitors of epoxide hydrolase, but the role of epoxide hydrolase in these interactions has not been clearly established. In this study, therapeutic concentrations of valproic acid (less than 1 mmol/L) and valpromide (less than 10 mumol/L) inhibited hydrolysis of carbamazepine epoxide and styrene oxide in human liver microsomes and in preparations of purified human liver microsomal epoxide hydrolase. Valpromide (KI = 5 mumol/L) was 100 times more potent than valproic acid (KI = 550 mumol/L) as an inhibitor of carbamazepine epoxide hydrolysis in microsomes. After administration of carbamazepine epoxide to volunteers, the transdihydrodiol formation clearance was decreased 20% by valproic acid (blood concentration approximately 113 mumol/L) and 67% by valpromide (blood concentration less than 10 mumol/L). For both valproic acid and valpromide, a striking similarity exists between in vitro and in vivo inhibitory potencies. Valproic acid and valpromide are the first drugs known to inhibit microsomal epoxide hydrolase, an important detoxification enzyme, at therapeutic concentrations.
        
Title: Altered ratio of carbamazepine-10,11-epoxide/carbamazepine in plasma of children: evidence of anticonvulsant drug interaction Schoeman JF, Elyas AA, Brett EM, Lascelles PT Ref: Dev Med Child Neurol, 26:749, 1984 : PubMed
A method of measuring carbamazepine-10,11-epoxide (CBZ-10,11-EPOX) has been developed and used to monitor plasma concentrations in children suffering from various forms of epilepsy. Children stabilised on standard doses of CBZ alone showed a ratio of CBZ-10,11-EPOX/CBZ of 18.92 +/- 8.08, expressed as a percentage of the CBZ concentration, while those on multiple-drug therapy (with the exception of benzodiazepines and phenobarbitone) showed both increased values of CBZ-10,11-EPOX/CBZ ratio and increased absolute concentrations of CBZ-10,11-EPOX in plasma. These changes correlated with clinical side-effects which could not be attributed to CBZ itself or to the other drugs administered concurrently.