1 moreTitle: Altered profile of floral volatiles and lignin content by down-regulation of Caffeoyl Shikimate Esterase in Petunia Kim JY, Cho KH, Keene SA, Colquhoun TA Ref: BMC Plant Biol, 23:210, 2023 : PubMed
BACKGROUND: The floral volatile profile of Petunia x hybrida 'Mitchell diploid' (MD) is dominated by phenylpropanoids, many of which are derived from p-coumaric acid. However, the downstream processes involved in the production of caffeoyl-CoA and feruloyl-CoA from p-coumaric acid are complex, as the genes and biosynthesis steps are associated with flavonoids and lignin synthesis as well as floral volatiles benzenoid/phenylpropanoid (FVBP). Caffeoyl shikimate esterase (CSE) converts caffeoyl shikimate to caffeic acid and is considered one of the essential regulators in lignin production. Moreover, CSE in involved in phenylpropanoid production. To investigate the roles of CSE in FVBP biosynthesis, we used RNAi-mediated CSE down-regulated (ir-PhCSE) petunias. RESULTS: Lowered CSE transcript accumulation in ir-PhCSE plants resulted in reduced lignin layers in the stems and stunted growth, suggesting a positive correlation between lignin layers and lignin content. The altered CSE level influenced the expression of many FVBP genes, including elevated transcripts of p-coumarate-3-hydroxylase (C3H), hydroxycinnamoyl transferase (HCT), and 4-coumaric acid: CoA ligase (4CL). In particular, the expression of C4H in ir-PhCSE plants was more than twice the expression in MD plants. Moreover, the production of volatile compounds was alterend in ir-PhCSE plants. Most floral volatiles decreased, and the amounts of phenylalanine and caffeic acid were significantly lower. CONCLUSIONS: Reduced lignin layers in the stems and stunted growth in ir-PhCSE plants suggest that PhCSE is essential for lignin production and plant growth in petunia. The decreased CSE level influenced the expression of many FVBP genes, and interference of shikimate derivates altered volatile compound production. Significantly decreased caffeic acid, but not ferulic acid, in ir-PhCSE plants suggest that CSE is primarily involved in the reaction of caffeoyl shikimate. Higher C3H and C4H transcripts seem to alleviate accumulated p-coumaric acid resulting from altered CSE. Finally, alteration in C3H, HCT, and 4CL in CSE down-regulated plants suggests an interaction of the FVBP genes, leading to the regulation of floral volatiles of petunia.
Pear [Pyrus bretschneideri cv. Dangshan Su] fruit quality is not always satisfactory owing to the presence of stone cells, and lignin is the main component of stone cells in pear fruits. Caffeoyl shikimate esterase (CSE) is a key enzyme in the lignin biosynthesis. Although CSE-like genes have been isolated from a variety of plant species, their orthologs are not characterized in pear. In this study, the CSE gene family (PbCSE) from P. bretschneideri was identified. According to the physiological data and quantitative RT-PCR (qRT-PCR), PbCSE1 was associated with lignin deposition and stone cell formation. The overexpression of PbCSE1 increased the lignin content in pear fruits. Relative to wild-type (WT) Arabidopsis, the overexpression of PbCSE1 delayed growth, increased the lignin deposition and lignin content in stems. Simultaneously, the expression of lignin biosynthetic genes were also increased in pear fruits and Arabidopsis. These results demonstrated that PbCSE1 plays an important role in cell lignification and will provide a potential molecular strategy to improve the quality of pear fruits.
Lignin is a major component of plant secondary cell walls. Here we describe caffeoyl shikimate esterase (CSE) as an enzyme central to the lignin biosynthetic pathway. Arabidopsis thaliana cse mutants deposit less lignin than do wild-type plants, and the remaining lignin is enriched in p-hydroxyphenyl units. Phenolic metabolite profiling identified accumulation of the lignin pathway intermediate caffeoyl shikimate in cse mutants as compared to caffeoyl shikimate levels in the wild type, suggesting caffeoyl shikimate as a substrate for CSE. Accordingly, recombinant CSE hydrolyzed caffeoyl shikimate into caffeate. Associated with the changes in lignin, the conversion of cellulose to glucose in cse mutants increased up to fourfold as compared to that in the wild type upon saccharification without pretreatment. Collectively, these data necessitate the revision of currently accepted models of the lignin biosynthetic pathway.
        
1 lessTitle: Altered profile of floral volatiles and lignin content by down-regulation of Caffeoyl Shikimate Esterase in Petunia Kim JY, Cho KH, Keene SA, Colquhoun TA Ref: BMC Plant Biol, 23:210, 2023 : PubMed
BACKGROUND: The floral volatile profile of Petunia x hybrida 'Mitchell diploid' (MD) is dominated by phenylpropanoids, many of which are derived from p-coumaric acid. However, the downstream processes involved in the production of caffeoyl-CoA and feruloyl-CoA from p-coumaric acid are complex, as the genes and biosynthesis steps are associated with flavonoids and lignin synthesis as well as floral volatiles benzenoid/phenylpropanoid (FVBP). Caffeoyl shikimate esterase (CSE) converts caffeoyl shikimate to caffeic acid and is considered one of the essential regulators in lignin production. Moreover, CSE in involved in phenylpropanoid production. To investigate the roles of CSE in FVBP biosynthesis, we used RNAi-mediated CSE down-regulated (ir-PhCSE) petunias. RESULTS: Lowered CSE transcript accumulation in ir-PhCSE plants resulted in reduced lignin layers in the stems and stunted growth, suggesting a positive correlation between lignin layers and lignin content. The altered CSE level influenced the expression of many FVBP genes, including elevated transcripts of p-coumarate-3-hydroxylase (C3H), hydroxycinnamoyl transferase (HCT), and 4-coumaric acid: CoA ligase (4CL). In particular, the expression of C4H in ir-PhCSE plants was more than twice the expression in MD plants. Moreover, the production of volatile compounds was alterend in ir-PhCSE plants. Most floral volatiles decreased, and the amounts of phenylalanine and caffeic acid were significantly lower. CONCLUSIONS: Reduced lignin layers in the stems and stunted growth in ir-PhCSE plants suggest that PhCSE is essential for lignin production and plant growth in petunia. The decreased CSE level influenced the expression of many FVBP genes, and interference of shikimate derivates altered volatile compound production. Significantly decreased caffeic acid, but not ferulic acid, in ir-PhCSE plants suggest that CSE is primarily involved in the reaction of caffeoyl shikimate. Higher C3H and C4H transcripts seem to alleviate accumulated p-coumaric acid resulting from altered CSE. Finally, alteration in C3H, HCT, and 4CL in CSE down-regulated plants suggests an interaction of the FVBP genes, leading to the regulation of floral volatiles of petunia.
Pear [Pyrus bretschneideri cv. Dangshan Su] fruit quality is not always satisfactory owing to the presence of stone cells, and lignin is the main component of stone cells in pear fruits. Caffeoyl shikimate esterase (CSE) is a key enzyme in the lignin biosynthesis. Although CSE-like genes have been isolated from a variety of plant species, their orthologs are not characterized in pear. In this study, the CSE gene family (PbCSE) from P. bretschneideri was identified. According to the physiological data and quantitative RT-PCR (qRT-PCR), PbCSE1 was associated with lignin deposition and stone cell formation. The overexpression of PbCSE1 increased the lignin content in pear fruits. Relative to wild-type (WT) Arabidopsis, the overexpression of PbCSE1 delayed growth, increased the lignin deposition and lignin content in stems. Simultaneously, the expression of lignin biosynthetic genes were also increased in pear fruits and Arabidopsis. These results demonstrated that PbCSE1 plays an important role in cell lignification and will provide a potential molecular strategy to improve the quality of pear fruits.
Caffeoyl shikimate esterase (CSE) was recently shown to play an essential role in lignin biosynthesis in Arabidopsis (Arabidopsis thaliana) and later in Medicago truncatula However, the general function of this enzyme was recently questioned by the apparent lack of CSE activity in lignifying tissues of different plant species. Here, we show that down-regulation of CSE in hybrid poplar (Populus tremula x Populus alba) resulted in up to 25% reduced lignin deposition, increased levels of p-hydroxyphenyl units in the lignin polymer, and a relatively higher cellulose content. The transgenic trees were morphologically indistinguishable from the wild type. Ultra-high-performance liquid chromatography-mass spectrometry-based phenolic profiling revealed a reduced abundance of several oligolignols containing guaiacyl and syringyl units and their corresponding hydroxycinnamaldehyde units, in agreement with the reduced flux toward coniferyl and sinapyl alcohol. These trees accumulated the CSE substrate caffeoyl shikimate along with other compounds belonging to the metabolic classes of benzenoids and hydroxycinnamates. Furthermore, the reduced lignin amount combined with the relative increase in cellulose content in the CSE down-regulated lines resulted in up to 62% more glucose released per plant upon limited saccharification when no pretreatment was applied and by up to 86% and 91% when acid and alkaline pretreatments were used. Our results show that CSE is not only important for the lignification process in poplar but is also a promising target for the development of improved lignocellulosic biomass crops for sugar platform biorefineries.
Lignin is a major component of plant secondary cell walls. Here we describe caffeoyl shikimate esterase (CSE) as an enzyme central to the lignin biosynthetic pathway. Arabidopsis thaliana cse mutants deposit less lignin than do wild-type plants, and the remaining lignin is enriched in p-hydroxyphenyl units. Phenolic metabolite profiling identified accumulation of the lignin pathway intermediate caffeoyl shikimate in cse mutants as compared to caffeoyl shikimate levels in the wild type, suggesting caffeoyl shikimate as a substrate for CSE. Accordingly, recombinant CSE hydrolyzed caffeoyl shikimate into caffeate. Associated with the changes in lignin, the conversion of cellulose to glucose in cse mutants increased up to fourfold as compared to that in the wild type upon saccharification without pretreatment. Collectively, these data necessitate the revision of currently accepted models of the lignin biosynthetic pathway.