Title: A structure-function analysis of chlorophyllase reveals a mechanism for activity regulation dependent on disulfide bonds Jo M, Knapp M, Boggs DG, Brimberry M, Donnan PH, Bridwell-Rabb J Ref: Journal of Biological Chemistry, :102958, 2023 : PubMed
Chlorophyll (Chl) pigments are used by photosynthetic organisms to facilitate light capture and mediate the conversion of sunlight into chemical energy. Due to the indispensable nature of this pigment, and its propensity to form reactive oxygen species, organisms heavily invest in its biosynthesis, recycling, and degradation. One key enzyme implicated in these processes is chlorophyllase, an alpha/beta hydrolase that hydrolyzes the phytol tail of Chl pigments to produce chlorophyllide (Chlide) molecules. This enzyme was discovered a century ago, but despite its importance to diverse photosynthetic organisms, there are still many missing biochemical details regarding how chlorophyllase functions. Here, we present the 4.46- resolution crystal structure of chlorophyllase from Triticum aestivum. This structure reveals the dimeric architecture of chlorophyllase, the arrangement of catalytic residues, an unexpected divalent metal ion binding site, and a substrate binding site that can accommodate a diverse range of pigments. Further, this structure exhibits the existence of both intermolecular and intramolecular disulfide bonds. We investigated the importance of these architectural features using enzyme kinetics, mass spectrometry, and thermal shift assays. Through this work, we demonstrated that the oxidation state of the Cys residues is imperative to the activity and stability of chlorophyllase, illuminating a biochemical trigger for responding to environmental stress. Additional bioinformatics analysis of the chlorophyllase enzyme family reveals widespread conservation of key catalytic residues and the identified "redox switch" among other plant chlorophyllase homologs, thus revealing key details regarding the structure-function relationships in chlorophyllase.
        
Title: Molecular, structural and biochemical characterization of a novel recombinant chlorophyllase from cyanobacterium Oscillatoria acuminata PCC 6304 Gu S, Dai X, Xu Z, Niu Q, Jiang J, Liu Y Ref: Microb Cell Fact, 20:14, 2021 : PubMed
BACKGROUND: Chlorophyllase catalyzes the hydrolysis of chlorophyll and produces chlorophyllide and phytol. Cyanobacterial chlorophyllases are likely to be more highly heterologously expressed than plant chlorophyllases. A novel recombinant chlorophyllase from the cyanobacterium Oscillatoria acuminata PCC 6304 was successfully expressed in Escherichia coli BL21(DE3). RESULTS: The putative N-terminal 28-amino-acid signal peptide sequence of O. acuminata chlorophyllase (OaCLH) is essential for its activity, but may confer poor solubility on OaCLH. The C-terminal fusion of a 6 x His tag caused a partial loss of activity in recombinant OaCLH, but an N-terminal 6 x His tag did not destroy its activity. The optimal pH and temperature for recombinant OaCLH activity are 7.0 and 40 degreesC, respectively. Recombinant OaCLH has hydrolysis activities against chlorophyll a, chlorophyll b, bacteriochlorophyll a, and pheophytin a, but prefers chlorophyll b and chlorophyll a as substrates. The results of site-directed mutagenesis experiments indicated that the catalytic triad of OaCLH consists of Ser159, Asp226, and His258. CONCLUSIONS: The high-level expression and broad substrate specificity of recombinant OaCLH make it suitable for genetically engineering and a promising biocatalyst for industrial production, with applications in vegetable oil refining and laundry detergents.
        
Title: A Novel Recombinant Chlorophyllase1 from Chlamydomonas reinhardtii for the Production of Chlorophyllide Derivatives Chou YL, Ko CY, Yen CC, Chen LF, Shaw JF Ref: Journal of Agricultural and Food Chemistry, 63:9496, 2015 : PubMed
Natural chlorophyll metabolites have exhibited physiological activity in vitro. In this study, a recombinant chlorophyllase1 gene from Chlamydomonas reinhardtii (CrCLH1) was isolated and characterized. Recombinant CrCLH1 can perform chlorophyll dephytylation and produce chlorophyllide and phytol. In a transient assay, the subcellular localization of CrCLH1-green fluorescent protein was determined to be outside the chloroplast. Biochemical analyses of the activity of recombinant CrCLH1 indicated that its optimal pH value and temperature are 6.0 and 40 degreesC, respectively. Enzyme kinetic data revealed that the recombinant CrCLH1 had a higher catalytic efficiency for chlorophyll a than for chlorophyll b and bacteriochlorophyll a. According to high-performance liquid chromatography analysis of chlorophyll hydrolysis, recombinant CrCLH1 catalyzed the conversion of chlorophyll a to pheophorbide a at pH 5. Therefore, recombinant CrCLH1 can be used as a biocatalyst to produce chlorophyllide derivatives.