10 moreTitle: Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields Kawai F, Kawabata T, Oda M Ref: Applied Microbiology & Biotechnology, 103:4253, 2019 : PubMed
Enzymatic hydrolysis of polyethylene terephthalate (PET) has been the subject of extensive previous research that can be grouped into two categories, viz. enzymatic surface modification of polyester fibers and management of PET waste by enzymatic hydrolysis. Different enzymes with rather specific properties are required for these two processes. Enzymatic surface modification is possible with several hydrolases, such as lipases, carboxylesterases, cutinases, and proteases. These enzymes should be designated as PET surface-modifying enzymes and should not degrade the building blocks of PET but should hydrolyze the surface polymer chain so that the intensity of PET is not weakened. Conversely, management of PET waste requires substantial degradation of the building blocks of PET; therefore, only a limited number of cutinases have been recognized as PET hydrolases since the first PET hydrolase was discovered by Muller et al. (Macromol Rapid Commun 26:1400-1405, 2005). Here, we introduce current knowledge on enzymatic degradation of PET with a focus on the key class of enzymes, PET hydrolases, pertaining to the definition of enzymatic requirements for PET hydrolysis, structural analyses of PET hydrolases, and the reaction mechanisms. This review gives a deep insight into the structural basis and dynamics of PET hydrolases based on the recent progress in X-ray crystallography. Based on the knowledge accumulated to date, we discuss the potential for PET hydrolysis applications, such as in designing waste stream management.
The enzymatic hydrolysis of the biodegradable polyester ecoflex and of a variety of oligomeric and polymeric ecoflex model substrates was investigated. For this purpose, substrate specificities of two enzymes of typical compost inhabitants, namely a fungal cutinase from Humicola insolens (HiC) and a bacterial cutinase from Thermobifida cellulosilytica (Thc_Cut1) were compared. Model substrates were systematically designed with variations of the chain length of the alcohol and the acid as well as with varying content of the aromatic constituent terephthalic acid (Ta). HPLC/MS identification and quantification of the hydrolysis products terephthalic acid (Ta), benzoic acid (Ba), adipic acid (Ada), mono(4-hydroxybutyl) terephthalate (BTa), mono-(2-hydroxyethyl) terephthalate (ETa), mono-(6-hydroxyhexyl) terephthalate (HTa) and bis(4-hydroxybutyl) terephthalate (BTaB) indicated that these enzymes indeed hydrolyze the tested esters. Shorter terminal chain length acids but longer chain length alcohols in oligomeric model substrates were generally hydrolyzed more efficiently. Thc_Cut1 hydrolyzed aromatic ester bonds more efficiently than HiC resulting in up to 3-fold higher concentrations of the monomeric hydrolysis product Ta. Nevertheless, HiC exhibited a higher overall hydrolytic activity on the tested polyesters, resulting in 2-fold higher concentration of released molecules. Thermogravimetry and differential scanning calorimetry (TG-DSC) of the polymeric model substrates revealed a general trend that a lower difference between melting temperature (Tm) and the temperature at which the enzymatic degradation takes place resulted in higher susceptibility to enzymatic hydrolysis.
        
Title: Enzymes for the biofunctionalization of poly(ethylene terephthalate) Zimmermann W, Billig S Ref: Adv Biochem Eng Biotechnol, 125:97, 2011 : PubMed
The functionalization of synthetic polymers such as poly(ethylene terephthalate) to improve their hydrophilicity can be achieved biocatalytically using hydrolytic enzymes. A number of cutinases, lipases, and esterases active on polyethylene terephthalate have been identified and characterized. Enzymes from Fusarium solani, Thermomyces insolens, T. lanuginosus, Aspergillus oryzae, Pseudomonas mendocina, and Thermobifida fusca have been studied in detail. Thermostable biocatalysts hydrolyzing poly(ethylene terephthalate) are promising candidates for the further optimization of suitable biofunctionalization processes for textile finishing, technical, and biomedical applications.
Polybutylene adipate terephthalate (PBAT) is a biodegradable alternative to polyethylene and can be broadly used in various applications. These polymers can be degraded by hydrolases of terrestrial and aquatic origin. In a previous study, we identified tandem PETase-like hydrolases (Ples) from the marine microbial consortium I1 that were highly expressed when a PBAT blend was supplied as the only carbon source. In this study, the tandem Ples, Ple628 and Ple629, were recombinantly expressed and characterized. Both enzymes are mesophilic and active on a wide range of oligomers. The activities of the Ples differed greatly when model substrates, PBAT-modified polymers or PET nanoparticles were supplied. Ple629 was always more active than Ple628. Crystal structures of Ple628 and Ple629 revealed a structural similarity to other PETases and can be classified as member of the PETases IIa subclass, alpha/beta hydrolase superfamily. Our results show that the predicted functions of Ple628 and Ple629 agree with the bioinformatic predictions, and these enzymes play a significant role in the plastic degradation by the consortium.
TfCa, a promiscuous carboxylesterase from Thermobifida fusca, was found to hydrolyze polyethylene terephthalate (PET) degradation intermediates such as bis(2-hydroxyethyl) terephthalate (BHET) and mono-(2-hydroxyethyl)-terephthalate (MHET). In this study, we elucidated the structures of TfCa in its apo form, as well as in complex with a PET monomer analogue and with BHET. The structurefunction relationship of TfCa was investigated by comparing its hydrolytic activity on various ortho- and para-phthalate esters of different lengths. Structure-guided rational engineering of amino acid residues in the substrate-binding pocket resulted in the TfCa variant I69W/V376A (WA), which showed 2.6-fold and 3.3-fold higher hydrolytic activity on MHET and BHET, respectively, than the wild-type enzyme. TfCa or its WA variant was mixed with a mesophilic PET depolymerizing enzyme variant [Ideonella sakaiensis PETase (IsPETase) PM] to degrade PET substrates of various crystallinity. The dual enzyme system with the wild-type TfCa or its WA variant produced up to 11-fold and 14-fold more terephthalate (TPA) than the single IsPETase PM, respectively. In comparison to the recently published chimeric fusion protein of IsPETase and MHETase, our system requires 10% IsPETase and one-fourth of the reaction time to yield the same amount of TPA under similar PET degradation conditions. Our simple dual enzyme system reveals further advantages in terms of cost-effectiveness and catalytic efficiency since it does not require time-consuming and expensive cross-linking and immobilization approaches.
Cutinases can play a significant role in a biotechnology-based circular economy. However, relatively little is known about the structure-function relationship of these enzymes, knowledge that is vital to advance optimized, engineered enzyme candidates. Here, two almost identical cutinases from Thermobifida cellulosilytica DSM44535 (Thc_Cut1 and Thc_Cut2) with only 18 amino acids difference were used for a rigorous biochemical characterization of their ability to hydrolyze PET, PET-model substrates, and cutin-model substrates. Kinetic parameters were compared with detailed in-silico docking studies of enzyme-ligand interactions. The two enzymes interacted with, and hydrolyzed PET differently, with Thc_Cut1 generating smaller PET-degradation products. Thc_Cut1 also showed higher catalytic efficiency on long-chain aliphatic substrates, an effect likely caused by small changes in the binding architecture. Thc_Cut2, in contrast, showed improved binding and catalytic efficiency when approaching the glass transition temperature of PET, an effect likely caused by longer amino acid residues in one area at the enzyme's surface. Finally, the position of the single residue Q93 close to the active site, rotated out in Thc_Cut2, influenced the ligand position of a trimeric PET-model substrate. In conclusion, we illustrate that even minor sequence differences in cutinases can affect their substrate binding, substrate specificity, and catalytic efficiency drastically. This article is protected by copyright. All rights reserved.
        
Title: Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields Kawai F, Kawabata T, Oda M Ref: Applied Microbiology & Biotechnology, 103:4253, 2019 : PubMed
Enzymatic hydrolysis of polyethylene terephthalate (PET) has been the subject of extensive previous research that can be grouped into two categories, viz. enzymatic surface modification of polyester fibers and management of PET waste by enzymatic hydrolysis. Different enzymes with rather specific properties are required for these two processes. Enzymatic surface modification is possible with several hydrolases, such as lipases, carboxylesterases, cutinases, and proteases. These enzymes should be designated as PET surface-modifying enzymes and should not degrade the building blocks of PET but should hydrolyze the surface polymer chain so that the intensity of PET is not weakened. Conversely, management of PET waste requires substantial degradation of the building blocks of PET; therefore, only a limited number of cutinases have been recognized as PET hydrolases since the first PET hydrolase was discovered by Muller et al. (Macromol Rapid Commun 26:1400-1405, 2005). Here, we introduce current knowledge on enzymatic degradation of PET with a focus on the key class of enzymes, PET hydrolases, pertaining to the definition of enzymatic requirements for PET hydrolysis, structural analyses of PET hydrolases, and the reaction mechanisms. This review gives a deep insight into the structural basis and dynamics of PET hydrolases based on the recent progress in X-ray crystallography. Based on the knowledge accumulated to date, we discuss the potential for PET hydrolysis applications, such as in designing waste stream management.
The enzymatic hydrolysis of the biodegradable polyester ecoflex and of a variety of oligomeric and polymeric ecoflex model substrates was investigated. For this purpose, substrate specificities of two enzymes of typical compost inhabitants, namely a fungal cutinase from Humicola insolens (HiC) and a bacterial cutinase from Thermobifida cellulosilytica (Thc_Cut1) were compared. Model substrates were systematically designed with variations of the chain length of the alcohol and the acid as well as with varying content of the aromatic constituent terephthalic acid (Ta). HPLC/MS identification and quantification of the hydrolysis products terephthalic acid (Ta), benzoic acid (Ba), adipic acid (Ada), mono(4-hydroxybutyl) terephthalate (BTa), mono-(2-hydroxyethyl) terephthalate (ETa), mono-(6-hydroxyhexyl) terephthalate (HTa) and bis(4-hydroxybutyl) terephthalate (BTaB) indicated that these enzymes indeed hydrolyze the tested esters. Shorter terminal chain length acids but longer chain length alcohols in oligomeric model substrates were generally hydrolyzed more efficiently. Thc_Cut1 hydrolyzed aromatic ester bonds more efficiently than HiC resulting in up to 3-fold higher concentrations of the monomeric hydrolysis product Ta. Nevertheless, HiC exhibited a higher overall hydrolytic activity on the tested polyesters, resulting in 2-fold higher concentration of released molecules. Thermogravimetry and differential scanning calorimetry (TG-DSC) of the polymeric model substrates revealed a general trend that a lower difference between melting temperature (Tm) and the temperature at which the enzymatic degradation takes place resulted in higher susceptibility to enzymatic hydrolysis.
Modeling and comparison of the structures of the two closely related cutinases Thc_Cut1 and Thc_Cut2 from Thermobifida cellulosilytica DSM44535 revealed that dissimilarities in their electrostatic and hydrophobic surface properties in the vicinity to the active site could be responsible for pronounced differences in hydrolysis efficiencies of polyester (i.e., PET, polyethyleneterephthalate). To investigate this hypothesis in more detail, selected amino acids of surface regions outside the active site of Thc_Cut2, which hydrolyzes PET much less efficiently than Thc_Cut1 were exchanged by site-directed mutagenesis. The mutants were expressed in E. coli BL21-Gold(DE3), purified and characterized regarding their specific activities and kinetic parameters on soluble substrates and their ability to hydrolyze PET and the PET model substrate bis(benzoyloxyethyl) terephthalate (3PET). Compared to Thc_Cut2, mutants carrying Arg29Asn and/or Ala30Val exchanges showed considerable higher specific activity and higher kcat /KM values on soluble substrates. Exchange of the positively charged arginine (Arg19 and Arg29) located on the enzyme surface to the non-charged amino acids serine and asparagine strongly increased the hydrolysis activity for 3PET and PET. In contrast, exchange of the uncharged glutamine (Glu65) by the negatively charged glutamic acid lead to a complete loss of hydrolysis activity on PET films. These findings clearly demonstrate that surface properties (i.e., amino acids located outside the active site on the protein surface) play an important role in PET hydrolysis. Biotechnol. Bioeng. 2013;110: 2581-2590. (c) 2013 Wiley Periodicals, Inc.
A cutinase from Thermomyces cellullosylitica (Thc_Cut1), hydrolyzing the synthetic polymer polyethylene terephthalate (PET), was fused with two different binding modules to improve sorption and thereby hydrolysis. The binding modules were from cellobiohydrolase I from Hypocrea jecorina (CBM) and from a polyhydroxyalkanoate depolymerase from Alcaligenes faecalis (PBM). Although both binding modules have a hydrophobic nature, it was possible to express the proteins in E. coli . Both fusion enzymes and the native one had comparable kcat values in the range of 311 to 342 s(-1) on pNP-butyrate, while the catalytic efficiencies kcat/Km decreased from 0.41 s(-1)/ muM (native enzyme) to 0.21 and 0.33 s(-1)/muM for Thc_Cut1+PBM and Thc_Cut1+CBM, respectively. The fusion enzymes were active both on the insoluble PET model substrate bis(benzoyloxyethyl) terephthalate (3PET) and on PET although the hydrolysis pattern was differed when compared to Thc_Cut1. Enhanced adsorption of the fusion enzymes was visible by chemiluminescence after incubation with a 6xHisTag specific horseradish peroxidase (HRP) labeled probe. Increased adsorption to PET by the fusion enzymes was confirmed with Quarz Crystal Microbalance (QCM-D) analysis and indeed resulted in enhanced hydrolysis activity (3.8x for Thc_Cut1+CBM) on PET, as quantified, based on released mono/oligomers.
A new esterase from Thermobifida halotolerans (Thh_Est) was cloned and expressed in E. coli and investigated for surface hydrolysis of polylactic acid (PLA) and polyethylene terephthalate (PET). Thh_Est is a member of the serine hydrolases superfamily containing the -GxSxG- motif with 8587% homology to an esterase from T. alba, to an acetylxylan esterase from T. fusca and to various Thermobifida cutinases. Thh_Est hydrolyzed the PET model substrate bis(benzoyloxyethyl)terephthalate and PET releasing terephthalic acid and mono-(2-hydroxyethyl) terephthalate in comparable amounts (19.8 and 21.5 mmol/mol of enzyme) while no higher oligomers like bis-(2-hydroxyethyl) terephthalate were detected. Similarly, PLA was hydrolyzed as indicated by the release of lactic acid. Enzymatic surface hydrolysis of PET and PLA led to a strong hydrophilicity increase, as quantified with a WCA decrease from 90.8 and 75.5 to 50.4 and to a complete spread of the water drop on the surface, respectively
From a screening on agar plates with bis(benzoyloxyethyl) terephthalate (3PET), a Bacillus subtilis p-nitrobenzylesterase (BsEstB) was isolated and demonstrated to hydrolyze polyethyleneterephthalate (PET). PET-hydrolase active strains produced clearing zones and led to the release of the 3PET hydrolysis products terephthalic acid (TA), benzoic acid (BA), 2-hydroxyethyl benzoate (HEB), and mono-(2-hydroxyethyl) terephthalate (MHET) in 3PET supplemented liquid cultures. The 3PET-hydrolase was isolated from non-denaturating polyacrylamide gels using fluorescein diacetate (FDA) and identified as BsEstB by LC-MS/MS analysis. BsEstB was expressed in Escherichia coli with C-terminally fused StrepTag II for purification. The tagged enzyme had a molecular mass of 55.2 kDa and a specific activity of 77 U/mg on p-nitrophenyl acetate and 108 U/mg on p-nitrophenyl butyrate. BsEstB was most active at 40 degrees C and pH 7.0 and stable for several days at pH 7.0 and 37 degrees C while the half-life times decreased to 3 days at 40 degrees C and only 6 h at 45 degrees C. From 3PET, BsEstB released TA, MHET, and BA, but neither bis(2-hydroxyethyl) terephthalate (BHET) nor hydroxyethylbenzoate (HEB). The kcat values decreased with increasing complexity of the substrate from 6 and 8 (s-1) for p-nitrophenyl-acetate (4NPA) and p-nitrophenyl-butyrate (4NPB), respectively, to 0.14 (s-1) for bis(2-hydroxyethyl) terephthalate (BHET). The enzyme hydrolyzed PET films releasing TA and MHET with a concomitant decrease of the water-contact angle (WCA) from 68.2 degrees +/-1.7 degrees to 62.6 degrees +/-1.1 degrees due to formation of novel hydroxyl and carboxyl groups. These data correlated with a fluorescence emission intensity increase seen for the enzyme treated sample after derivatization with 2-(bromomethyl)naphthalene.
        
Title: Enzymes for the biofunctionalization of poly(ethylene terephthalate) Zimmermann W, Billig S Ref: Adv Biochem Eng Biotechnol, 125:97, 2011 : PubMed
The functionalization of synthetic polymers such as poly(ethylene terephthalate) to improve their hydrophilicity can be achieved biocatalytically using hydrolytic enzymes. A number of cutinases, lipases, and esterases active on polyethylene terephthalate have been identified and characterized. Enzymes from Fusarium solani, Thermomyces insolens, T. lanuginosus, Aspergillus oryzae, Pseudomonas mendocina, and Thermobifida fusca have been studied in detail. Thermostable biocatalysts hydrolyzing poly(ethylene terephthalate) are promising candidates for the further optimization of suitable biofunctionalization processes for textile finishing, technical, and biomedical applications.
A lipase from Thermomyces lanuginosus and cutinases from Thermobifida fusca and Fusarium solani hydrolysed poly(ethylene terephthalate) (PET) fabrics and films and bis(benzoyloxyethyl) terephthalate (3PET) endo-wise as shown by MALDI-Tof-MS, LC-UVD/MS, cationic dyeing and XPS analysis. Due to interfacial activation of the lipase in the presence of Triton X-100, a seven-fold increase of hydrolysis products released from 3PET was measured. In the presence of the plasticizer N,N-diethyl-2-phenylacetamide (DEPA), increased hydrolysis rates of semi-crystalline PET films and fabrics were measured both for lipase and cutinase. The formation of novel polar groups resulted in enhanced dye ability with additional increase in colour depth by 130% and 300% for cutinase and lipase, respectively, in the presence of plasticizer.
Recently the potential of enzymes for surface hydrophilisation and/or functionalisation of polyethyleneterephthalate (PET) and polyamide (PA) has been discovered. However, there was no correlation between enzyme class/activity (e.g. esterase, lipase, cutinase) and surface hydrolysis of these polymers and consequently no simple assay to estimate this capability. Enzymes active on the model substrates bis (benzoyloxyethyl) terephthalate and adipic acid bishexyl-amide, were also capable of increasing the hydrophilicity of PET and PA. When dosed at the identical activity on 4-nitrophenyl butyrate, only enzymes from Thermobifida fusca, Aspergillus sp., Beauveria sp. and commercial enzymes (TEXAZYME PES sp5 and Lipase PS) increased the hydrophilicity of PET fibres while other esterases and lipases did not show any effect. Activity on PET correlated with the activity on the model substrate. Hydrophilicity of fibres was greatly improved based on increases in rising height of up to 4.3 cm and the relative decrease of water absorption time between control and sample of the water was up to 76%. Similarly, enzymes increasing the hydrophilicity of PA fibres such as from Nocardia sp., Beauveria sp. and F. solani hydrolysed the model substrate; however, there was no common enzyme activity (e.g. protease, esterase, amidase) which could be attributed to all these enzymes.
It is demonstrated that PET, which is usually regarded as non-biodegradable, can effectively be depolymerized by a hydrolase from the actinomycete Thermobifida fusca. Erosion rates of 8 to 17 micro m per week were obtained upon incubation at 55 degC. Lipases from Pseudomonas sp. and Candida antarctica did not degrade PET under comparable conditions. The influences of crystallinity, melting point, and glass transition temperature on the enzymatic attack on PET, PBT, and PHB are discussed.