Search PubMed for references concerning: 2,4-D-Methyl
Title: Role of a carboxylesterase in herbicide bioactivation in Arabidopsis thaliana Gershater MC, Cummins I, Edwards R Ref: Journal of Biological Chemistry, 282:21460, 2007 : PubMed
Arabidopsis thaliana contains multiple carboxyesterases (AtCXEs) with activities toward xenobiotics, including herbicide esters that are activated to their phytotoxic acids upon hydrolysis. On the basis of their susceptibility to inhibition by organophosphates, these AtCXEs are all serine hydrolases. Using a trifunctional probe bearing a fluorophosphonate together with biotin and rhodamine to facilitate detection and recovery, four dominant serine hydrolases were identified in the proteome of Arabidopsis. Using a combination of protein purification, capture with the trifunctional probe and proteomics, one of these hydrolases, AtCXE12, was shown to be the major carboxyesterase responsible for hydrolyzing the pro-herbicide methyl-2,4-dichlorophenoxyacetate (2,4-D-methyl) to the phytotoxic acid 2,4-dichlorophenoxyacetic acid. Recombinant expression of the other identified hydrolases showed that AtCXE12 was unique in hydrolyzing 2,4-D-methyl. To determine the importance of AtCXE12 in herbicide metabolism and efficacy, the respective tDNA knock-out (atcxe12) plants were characterized and shown to lack expression of AtCXE12 and have greatly reduced levels of 2,4-D-methyl-hydrolyzing activity. Young atcxe12 seedlings were less sensitive than wild type plants to 2,4-D-methyl, confirming a role for the enzyme in herbicide bioactivation in Arabidopsis.
        
Title: Carboxylesterase activities toward pesticide esters in crops and weeds Gershater M, Sharples K, Edwards R Ref: Phytochemistry, 67:2561, 2006 : PubMed
Proteins were extracted from maize, rice, sorghum, soybean, flax and lucerne; the weeds Abutilon theophrasti, Echinochloa crus-galli, Phalaris canariensis, Setaria faberii, Setaria viridis, Sorghum halepense and the model plant Arabidopsis thaliana and assayed for carboxylesterase activity toward a range of xenobiotics. These included the pro-herbicidal esters clodinafop-propargyl, fenoxaprop-ethyl, fenthioprop-ethyl, methyl-2,4-dichlorophenoxyacetic acid (2,4-d-methyl), bromoxynil-octanoate, the herbicide-safener cloquintocet-mexyl and the pyrethroid insecticide permethrin. Highest activities were recorded with alpha-naphthyl acetate and methylumbelliferyl acetate. Esters of p-nitrophenol were also readily hydrolysed, with turnover declining as the chain length of the acyl component increased. Activities determined with model substrates were much higher than those observed with pesticide esters and were of limited value in predicting the relative rates of hydrolysis of the crop protection agents. Substrate preferences with the herbicides were typically 2,4-d-methyl>clodinafop-propargyl>fenthioprop-ethyl, fenoxaprop-ethyl and bromoxynil-octanoate. Isoelectric focussing in conjunction with staining for esterase activity using alpha-naphthyl acetate as substrate confirmed the presence of multiple carboxylesterase isoenzymes in each plant, with major qualitative differences observed between species. The presence of serine hydrolases among the resolved isoenzymes was confirmed through their selective inhibition by the organophosphate insecticide paraoxon. Our studies identify potentially exploitable differences between crops and weeds in their ability to bioactivate herbicides by enzymic hydrolysis and also highlight the usefulness of Arabidopsis as a plant model to study xenobiotic biotransformation.