Search PubMed for references concerning: 1,2-Diolein
5 moreTitle: The lipolytic degradation of highly structured cubic micellar nanoparticles of soy phosphatidylcholine and glycerol dioleate by phospholipase A2 and triacylglycerol lipase Wadsater M, Barauskas J, Tiberg F, Nylander T Ref: Chemistry & Physic of Lipids, 211:86, 2018 : PubMed
The effects of different lipolytic enzymes on the structure of lipid liquid crystalline nano-particles (LCNP) have been investigated by cryogenic transmission electron microscopy (cryo-TEM) and synchrotron small angle X-ray diffraction (SAXD). Here we used highly structured cubic micellar (Fd3m) nanoparticles of 50/50 (wt%/wt%) soy phosphatidyl choline (SPC)/glycerol dioleate (GDO) as substrate. Two types of lipolytic enzymes were used, phospholipase A2 (PLA2) that catalyses degradation of the phospholipid component, SPC, and porcine pancreatic triacylglycerol lipase (TGL) that facilitate the hydrolysis of the diglyceride, GDO. Evolution of the structure was found to be very different and linked to specificity of the two types of enzymes. PLA2, which hydrolyses the lamellar forming component, SPC, induces a reversed micellar lipid phase, while TGL which hydrolysis the reverse phase forming compound, GDO, induces a lamellar phase.
Hormone-sensitive lipase (HSL) contributes importantly to the mobilization of fatty acids in adipocytes and shows a substrate preference for the diacylglycerols (DAGs) originating from triacylglycerols. To determine whether HSL shows any stereopreference during the hydrolysis of diacylglycerols, racemic 1,2(2,3)-sn-diolein was used as a substrate and the enantiomeric excess (ee%) of residual 1,2-sn-diolein over 2,3-sn-diolein was measured as a function of DAG hydrolysis. Enantiomeric DAGs were separated by performing chiral-stationary-phase HPLC after direct derivatization from lipolysis product extracts. The fact that the ee% of 1,2-sn-diolein over 2,3-sn-diolein increased with the level of hydrolysis indicated that HSL has a preference for 2,3-sn-diolein as a substrate and therefore a stereopreference for the sn-3 position of dioleoylglycerol. The ee% of 1,2-sn-diolein reached a maximum value of 36% at 42% hydrolysis. Among the various mammalian lipases tested so far, HSL is the only lipolytic carboxylester hydrolase found to have a pronounced stereospecificity for the sn-3 position of dioleoylglycerol.
The effects of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), a specific activator of protein kinase C (PKc), were examined on the frog neuromuscular junction. The depolarization elicited by iontophoretically applied acetylcholine (ACh) was reversibly decreased by 20-60% when muscle fibres were exposed to 1-5 X 10(-7) M TPA. Liposome-delivered phosphatidylcholine (100 micrograms/ml) prevented this effect. A similar decrease in ACh-sensitivity was produced by diacylglycerol (diolein), a physiological activator of PKc, but in this case the decrease was only partially reversible. In TPA-Ringer, the peak size of miniature end-plate potentials exhibited a small decrease; miniature end-plate currents were reduced in size and their decay time constant became longer and relatively independent of membrane potential. The possibility that these TPA-induced actions are mediated by activation of PKc is discussed.
Carboxylesterase 2 (CES2/Ces2) proteins exert established roles in (pro)drug metabolism. Recently, human and murine CES2/Ces2c have been discovered as triglyceride (TG) hydrolases implicated in the development of obesity and fatty liver disease. The murine Ces2 family consists of seven homologous genes as opposed to a single CES2 gene in humans. However, the mechanistic role of Ces2 protein family members is not completely understood. In this study, we examined activities of all Ces2 members towards TGs, diglycerides (DGs) and monoglycerides (MGs) as substrate. Besides CES2/Ces2c, we measured significant TG hydrolytic activities for Ces2a, Ces2b, and Ces2e. Notably, these Ces2 members and CES2 efficiently hydrolyzed DGs and MGs and their activities even surpassed those measured for TG hydrolysis. The localization of CES2/Ces2c proteins at the ER may implicate a role of these lipases in lipid signaling pathways. We found divergent expression of Ces2 genes in the liver and intestine of mice on high fat diet, which could relate to changes in lipid signaling. Finally, we demonstrate reduced CES2 expression in the colon of patients with inflammatory bowel disease and a similar decline in Ces2 expression in the colon of a murine colitis model. Together, these results demonstrate that CES2/Ces2 members are highly efficient DG and MG hydrolases that may play an important role in liver and gut lipid signaling.
        
Title: The lipolytic degradation of highly structured cubic micellar nanoparticles of soy phosphatidylcholine and glycerol dioleate by phospholipase A2 and triacylglycerol lipase Wadsater M, Barauskas J, Tiberg F, Nylander T Ref: Chemistry & Physic of Lipids, 211:86, 2018 : PubMed
The effects of different lipolytic enzymes on the structure of lipid liquid crystalline nano-particles (LCNP) have been investigated by cryogenic transmission electron microscopy (cryo-TEM) and synchrotron small angle X-ray diffraction (SAXD). Here we used highly structured cubic micellar (Fd3m) nanoparticles of 50/50 (wt%/wt%) soy phosphatidyl choline (SPC)/glycerol dioleate (GDO) as substrate. Two types of lipolytic enzymes were used, phospholipase A2 (PLA2) that catalyses degradation of the phospholipid component, SPC, and porcine pancreatic triacylglycerol lipase (TGL) that facilitate the hydrolysis of the diglyceride, GDO. Evolution of the structure was found to be very different and linked to specificity of the two types of enzymes. PLA2, which hydrolyses the lamellar forming component, SPC, induces a reversed micellar lipid phase, while TGL which hydrolysis the reverse phase forming compound, GDO, induces a lamellar phase.
Hormone-sensitive lipase (HSL) contributes importantly to the mobilization of fatty acids in adipocytes and shows a substrate preference for the diacylglycerols (DAGs) originating from triacylglycerols. To determine whether HSL shows any stereopreference during the hydrolysis of diacylglycerols, racemic 1,2(2,3)-sn-diolein was used as a substrate and the enantiomeric excess (ee%) of residual 1,2-sn-diolein over 2,3-sn-diolein was measured as a function of DAG hydrolysis. Enantiomeric DAGs were separated by performing chiral-stationary-phase HPLC after direct derivatization from lipolysis product extracts. The fact that the ee% of 1,2-sn-diolein over 2,3-sn-diolein increased with the level of hydrolysis indicated that HSL has a preference for 2,3-sn-diolein as a substrate and therefore a stereopreference for the sn-3 position of dioleoylglycerol. The ee% of 1,2-sn-diolein reached a maximum value of 36% at 42% hydrolysis. Among the various mammalian lipases tested so far, HSL is the only lipolytic carboxylester hydrolase found to have a pronounced stereospecificity for the sn-3 position of dioleoylglycerol.
Dandruff and seborrheic dermatitis (D/SD) are common hyperproliferative scalp disorders with a similar etiology. Both result, in part, from metabolic activity of Malassezia globosa and Malassezia restricta, commensal basidiomycete yeasts commonly found on human scalps. Current hypotheses about the mechanism of D/SD include Malassezia-induced fatty acid metabolism, particularly lipase-mediated breakdown of sebaceous lipids and release of irritating free fatty acids. We report that lipase activity was detected in four species of Malassezia, including M. globosa. We isolated lipase activity by washing M. globosa cells. The isolated lipase was active against diolein, but not triolein. In contrast, intact cells showed lipase activity against both substrates, suggesting the presence of at least another lipase. The diglyceride-hydrolyzing lipase was purified from the extract, and much of its sequence was determined by peptide sequencing. The corresponding lipase gene (LIP1) was cloned and sequenced. Confirmation that LIP1 encoded a functional lipase was obtained using a covalent lipase inhibitor. LIP1 was differentially expressed in vitro. Expression was detected on three out of five human scalps, as indicated by reverse transcription-PCR. This is the first step in a molecular description of lipid metabolism on the scalp, ultimately leading toward a test of its role in D/SD etiology.
Recombinant human pancreatic lipase-related protein 2 (rHPLRP2) was produced in the protease A-deficient yeast Pichia pastoris. A major protein with a molecular mass of 50 kDa was purified from the culture medium using SP-Sepharose and Mono Q chromatography. The protein was found to be highly sensitive to the proteolytic cleavage of a peptide bond in the lid domain. The proteolytic cleavage process occurring in the lid affected both the lipase and phospholipase activities of rHPLRP2. The substrate specificity of the nonproteolyzed rHPLRP2 was investigated using pH-stat and monomolecular film techniques and various substrates (glycerides, phospholipids, and galactolipids). All of the enzyme activities were maximum at alkaline pH values and decreased in the pH 5-7 range corresponding to the physiological conditions occurring in the duodenum. rHPLRP2 was found to act preferentially on substrates forming small aggregates in solution (monoglycerides, egg phosphatidylcholine, and galactolipids) rather than on emulsified substrates such as triolein and diolein. The activity of rHPLRP2 on monogalactosyldiglyceride and digalactosyldiglyceride monomolecular films was determined and compared with that of guinea pig pancreatic lipase-related protein 2, which shows a large deletion in the lid domain. The presence of a full-length lid domain in rHPLRP2 makes it possible for enzyme activity to occur at higher surface pressures. The finding that the inhibition of nonproteolyzed rHPLRP2 by tetrahydrolipstatin and diethyl-p-nitrophenyl phosphate does not involve any bile salt requirements suggests that the rHPLRP2 lid adopts an open conformation in aqueous media.
        
Title: In vivo and in vitro studies on the stereoselective hydrolysis of tri- and diglycerides by gastric and pancreatic lipases Carriere F, Rogalska E, Cudrey C, Ferrato F, Laugier R, Verger R Ref: Bioorganic & Medicinal Chemistry, 5:429, 1997 : PubMed
The stereoselectivity of dog gastric and dog pancreatic lipases was investigated both in vitro, under simulated physiological conditions, and in vivo, during the digestion of a liquid test meal. In vitro it was observed that although both lipases had a stereopreference for the sn-3 position in triglycerides, it was about three times higher in the case of the gastric lipase. On the other hand, both lipases clearly showed a comparable enantioselectivity for the sn-1 position when a racemic diolein was used as the substrate. In the case of pancreatic lipase, the enantiomeric excess of 1,2-sn-diolein generated in vitro by the hydrolysis of triolein was found to decrease significantly, and even to be slightly reversed, at high rates of hydrolysis (above 50%) due to the further stereoselective hydrolysis of diglycerides into monoglycerides. This finding may explain the low enantiomeric excess of the diglycerides observed in vivo during the early phase of intraduodenal digestion when pancreatic lipase plays a predominant role and the rate of triolein hydrolysis is already high. On the other hand, a large enantiomeric excess of 1,2-sn-diolein generated from triolein was always the fingerprint of the gastric lipase in vitro even at high hydrolysis rates. This fingerprinting of gastric lipase was observed during both the intragastric phase and the late intestinal phase of lipolysis. This feature was therefore taken as an index to determine the respective roles of gastric and pancreatic lipases during in vivo lipolysis. To the best of our knowledge, this is the first time that stereoselectivity has been used as a tool to discriminate between the activities of two enzymes hydrolyzing the same substrate in vivo.
The monomolecular film technique previously used to study the kinetics of lipase hydrolysis was adapted to synthesizing oleoyl glycerides (monoolein, diolein, and triolein). The water subphase was replaced by glycerol, and a film of oleic acid was initially spread on the glycerol surface. In this system a recombinant cutinase from Fusarium solani was able to catalyze oleoyl glyceride synthesis. More than 50% of the oleic acid film was acylated after 7 min of reaction. The surface pressure applied to the monomolecular film acts as a physical selectivity factor since glyceride synthesis can be steered so as to produce either diolein or triolein.
The effects of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), a specific activator of protein kinase C (PKc), were examined on the frog neuromuscular junction. The depolarization elicited by iontophoretically applied acetylcholine (ACh) was reversibly decreased by 20-60% when muscle fibres were exposed to 1-5 X 10(-7) M TPA. Liposome-delivered phosphatidylcholine (100 micrograms/ml) prevented this effect. A similar decrease in ACh-sensitivity was produced by diacylglycerol (diolein), a physiological activator of PKc, but in this case the decrease was only partially reversible. In TPA-Ringer, the peak size of miniature end-plate potentials exhibited a small decrease; miniature end-plate currents were reduced in size and their decay time constant became longer and relatively independent of membrane potential. The possibility that these TPA-induced actions are mediated by activation of PKc is discussed.