Structure-based drug design utilizes apo-protein or complex structures retrieved from the PDB. >57% of crystallographic PDB entries were obtained with polyethyleneglycols (PEGs) as precipitant and/or as cryoprotectant, but >6% of these report presence of individual ethyleneglycol oligomers. We report a case in which ethyleneglycol oligomers' presence in a crystal structure markedly affected the bound ligand's position. Specifically, we compared the positions of methylene blue and decamethonium in acetylcholinesterase complexes obtained using isomorphous crystals precipitated with PEG200 or ammonium sulfate. The ligands' positions within the active-site gorge in complexes obtained using PEG200 are influenced by presence of ethyleneglycol oligomers in both cases bound to W84 at the gorge's bottom, preventing interaction of the ligand's proximal quaternary group with its indole. Consequently, both ligands are approximately 3.0A further up the gorge than in complexes obtained using crystals precipitated with ammonium sulfate, in which the quaternary groups make direct pi-cation interactions with the indole. These findings have implications for structure-based drug design, since data for ligand-protein complexes with polyethyleneglycol as precipitant may not reflect the ligand's position in its absence, and could result in selecting incorrect drug discovery leads. Docking methylene blue into the structure obtained with PEG200, but omitting the ethyleneglycols, yields results agreeing poorly with the crystal structure; excellent agreement is obtained if they are included. Many proteins display features in which precipitants might lodge. It will be important to investigate presence of precipitants in published crystal structures, and whether it has resulted in misinterpreting electron density maps, adversely affecting drug design. This article is protected by copyright. All rights reserved.
        
Title: Structural and functional characterization of the interaction of the photosensitizing probe methylene blue with Torpedo californica acetylcholinesterase Paz A, Roth E, Ashani Y, Xu Y, Shnyrov VL, Sussman JL, Silman I, Weiner L Ref: Protein Science, 21:1138, 2012 : PubMed
The photosensitizer methylene blue MB generates singlet oxygen that irreversibly inhibits Torpedo californica acetylcholinesterase TcAChE In the dark it inhibits reversibly Binding is accompanied by a bathochromic absorption shift used to demonstrate displacement by other acetylcholinesterase inhibitors interacting with the catalytic anionic subsite CAS the peripheral anionic subsite PAS or bridging them MB is a noncompetitive inhibitor of TcAChE competing with reversible inhibitors directed at both anionic subsites but a single site is involved in inhibition MB also quenches TcAChE's intrinsic fluorescence It binds to TcAChE covalently inhibited by a small organophosphate OP but not an OP containing a bulky pyrene Differential scanning calorimetry shows an 8 degrees increase in the denaturation temperature of the MB/TcAChE complex relative to native TcAChE and a less than twofold increase in cooperativity of the transition The crystal structure reveals a single MB stacked against Trp279 in the PAS oriented down the gorge toward the CAS it is plausible that irreversible inhibition is associated with photooxidation of this residue and others within the active-site gorge The kinetic and spectroscopic data showing that inhibitors binding at the CAS can impede binding of MB are reconciled by docking studies showing that the conformation adopted by Phe330 midway down the gorge in the MB/TcAChE crystal structure precludes simultaneous binding of a second MB at the CAS Conversely binding of ligands at the CAS dislodges MB from its preferred locus at the PAS The data presented demonstrate that TcAChE is a valuable model for understanding the molecular basis of local photooxidative damage.
        
Representative scheme of ACHE structure and an image from PDBsum server
Databases
PDB-Sum
5E4T Previously Class, Architecture, Topology and Homologous superfamily - PDB-Sum server
FSSP
5E4TFold classification based on Structure-Structure alignment of Proteins - FSSP server