Biotrophic plant pathogens encounter a postinfection basal resistance layer controlled by the lipase-like protein enhanced disease susceptibility 1 (EDS1) and its sequence-related interaction partners, senescence-associated gene 101 (SAG101) and phytoalexin deficient 4 (PAD4). Maintainance of separate EDS1 family member clades through angiosperm evolution suggests distinct functional attributes. We report the Arabidopsis EDS1-SAG101 heterodimer crystal structure with juxtaposed N-terminal alpha/beta hydrolase and C-terminal alpha-helical EP domains aligned via a large conserved interface. Mutational analysis of the EDS1-SAG101 heterodimer and a derived EDS1-PAD4 structural model shows that EDS1 signals within mutually exclusive heterocomplexes. Although there is evolutionary conservation of alpha/beta hydrolase topology in all three proteins, a noncatalytic resistance mechanism is indicated. Instead, the respective N-terminal domains appear to facilitate binding of the essential EP domains to create novel interaction surfaces on the heterodimer. Transitions between distinct functional EDS1 heterodimers might explain the central importance and versatility of this regulatory node in plant immunity.
        
Title: Crystallization and preliminary crystallographic analysis of Arabidopsis thaliana EDS1, a key component of plant immunity, in complex with its signalling partner SAG101 Wagner S, Rietz S, Parker JE, Niefind K Ref: Acta Crystallographica Sect F Struct Biol Cryst Commun, 67:245, 2011 : PubMed
In plants, the nucleocytoplasmic protein EDS1 (Enhanced disease susceptibility1) is an important regulator of innate immunity, coordinating host-cell defence and cell-death programs in response to pathogen attack. Arabidopsis thaliana EDS1 stabilizes and signals together with its partners PAD4 (Phytoalexin deficient4) and SAG101 (Senescence-associated gene101). Characterization of EDS1 molecular configurations in vitro and in vivo points to the formation of structurally and spatially distinct EDS1 homomeric dimers and EDS1 heteromeric complexes with either PAD4 or SAG101 as necessary components of the immune response. EDS1, PAD4 and SAG101 constitute a plant-specific protein family with a unique `EP' (EDS1-PAD4-specific) domain at their C-termini and an N-terminal domain resembling enzymes with an alpha/beta-hydrolase fold. Here, the expression, purification and crystallization of a functional EDS1 complex formed by EDS1 and SAG101 from Arabidopsis thaliana are reported. The crystals belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 101.8, b = 115.9, c = 122.8 A, and diffracted to 3.5 A resolution.
        
Representative scheme of Plant_lipase_EDS1-like structure and an image from PDBsum server
no Image
Databases
PDB-Sum
4NFU Previously Class, Architecture, Topology and Homologous superfamily - PDB-Sum server
FSSP
4NFUFold classification based on Structure-Structure alignment of Proteins - FSSP server