The first crystal structures of lipases that have been covalently modified through site-selective inhibition by different organometallic phosphonate-pincer-metal complexes are described. Two ECE-pincer-type d(8)-metal complexes, that is, platinum (1) or palladium (2) with phosphonate esters (ECE = [(EtO)-(O=)P(-O-C(6)H(4)-(NO(2))-4)(-C(3)H(6)-4-(C(6)H(2)-(CH(2)E)(2))](-); E = NMe(2) or SMe) were introduced prior to crystallization and have been shown to bind selectively to the Ser(120) residue in the active site of the lipase cutinase to give cut-1 (platinum) or cut-2 (palladium) hybrids. For all five presented crystal structures, the ECE-pincer-platinum or -palladium head group sticks out of the cutinase molecule and is exposed to the solvent. Depending on the nature of the ECE-pincer-metal head group, the ECE-pincer-platinum and -palladium guests occupy different pockets in the active site of cutinase, with concomitant different stereochemistries on the phosphorous atom for the cut-1 (S(P)) and cut-2 (R(P)) structures. When cut-1 was crystallized under halide-poor conditions, a novel metal-induced dimeric structure was formed between two cutinase-bound pincer-platinum head groups, which are interconnected through a single mu-Cl bridge. This halide-bridged metal dimer shows that coordination chemistry is possible with protein-modified pincer-metal complexes. Furthermore, we could use NCN-pincer-platinum complex 1 as site-selective tool for the phasing of raw protein diffraction data, which shows the potential use of pincer-platinum complex 1 as a heavy-atom derivative in protein crystallography.
The work described herein presents a strategy for the regioselective introduction of organometallic complexes into the active site of the lipase cutinase. Nitrophenol phosphonate esters, well known for their lipase inhibitory activity, are used as anchor functionalities and were found to be ideal tools to develop a single-site-directed immobilization method. A small series of phosphonate esters, covalently attached to ECE "pincer"-type d8-metal complexes through a propyl tether (ECE=[C6H3(CH2E)(2)-2,6]-; E=NR2 or SR), were designed and synthesized. Cutinase was treated with these organometallic phosphonate esters and the new metal-complex/protein hybrids were identified as containing exactly one organometallic unit per protein. The organometallic proteins were purified by membrane dialysis and analyzed by ESI-mass spectrometry. The major advantages of this strategy are: 1) one transition metal can be introduced regioselectively and, hence, the metal environment can potentially be fine-tuned; 2) purification procedures are facile due to the use of pre-synthesized metal complexes; and, most importantly, 3) the covalent attachment of robust organometallic pincer complexes to an enzyme is achieved, which will prevent metal leaching from these hybrids. The approach presented herein can be regarded as a tool in the development of regio- and enantioselective catalyst as well as analytical probes for studying enzyme properties (e.g., structure) and, hence, is a "proof-of-principle design" study in enzyme chemistry.
        
Representative scheme of Cutinase structure and an image from PDBsum server
Databases
PDB-Sum
3ESD Previously Class, Architecture, Topology and Homologous superfamily - PDB-Sum server
FSSP
3ESDFold classification based on Structure-Structure alignment of Proteins - FSSP server