Oxime reactivators are causal antidotes for organophosphate intoxication. Herein, the toxicity, pharmacokinetics, and reactivation effectiveness of o-chlorinated bispyridinium oxime K870 are reported. Oxime K870 was found to have a safe profile at a dose of 30 mg/kg in rats. It exhibited rapid absorption and renal clearance similar to those of other charged oximes after intramuscular administration. Its isoxazole-pyridinium degradation product was identified in vivo. Although it showed some improvement in brain targeting, it was nevertheless rapidly effluxed from the central nervous system. Its reactivation effectiveness was evaluated in rats and mice intoxicated with sarin, tabun, VX, and paraoxon and compared with pralidoxime and asoxime. K870 was found to be less effective in reversing tabun poisoning compared to its parent unchlorinated oxime K203. However, K870 efficiently reactivated blood acetylcholinesterase for all tested organophosphates in rats. In addition, K870 significantly protected against intoxication by all tested organophosphates in mice. For these reasons, oxime K870 seems to have a broader reactivation spectrum against multiple organophosphates. It seems important to properly modulate the oximate forming properties (pK(a)) to obtain more versatile oxime reactivators.
        
Title: A Comparison of the Neuroprotective and Reactivating Efficacy of a Novel Bispyridinium Oxime K870 with Commonly Used Pralidoxime and the Oxime HI-6 in Tabun-Poisoned Rats Kassa J, Hatlapatkova J, arova Karasova J, Hepnarova V, Caisberger F, Pejchal J Ref: Acta Medica (Hradec Kralove), 64:145, 2021 : PubMed
AIM: The comparison of neuroprotective and central reactivating effects of the oxime K870 in combination with atropine with the efficacy of standard antidotal treatment in tabun-poisoned rats. METHODS: The neuroprotective effects of antidotal treatment were determined in rats poisoned with tabun at a sublethal dose using a functional observational battery 2 h and 24 h after tabun administration, the tabun-induced brain damage was investigated by the histopathological evaluation and central reactivating effects of oximes was evaluated by the determination of acetylcholinesterase activity in the brain using a standard spectrophotometric method. RESULTS: The central reactivating efficacy of a newly developed oxime K870 roughly corresponds to the central reactivating efficacy of pralidoxime while the ability of the oxime HI-6 to reactivate tabun-inhibited acetylcholinesterase in the brain was negligible. The ability of the oxime K870 to decrease tabun-induced acute neurotoxicity was slightly higher than that of pralidoxime and similar to the oxime HI-6. These results roughly correspond to the histopathological evaluation of tabun-induced brain damage. CONCLUSION: The newly synthesized oxime K870 is not a suitable replacement for commonly used oximes in the antidotal treatment of acute tabun poisonings because its neuroprotective efficacy is only slightly higher or similar compared to studied currently used oximes.