Our planet is flooded with plastics and the need for sustainable recycling strategies of polymers has become increasingly urgent. Enzyme-based hydrolysis of post-consumer plastic is an emerging strategy for closed-loop recycling of polyethylene terephthalate (PET). The polyester hydrolase PHL7 isolated from a compost metagenome completely hydrolyzed amorphous PET films, releasing 91 mg of terephthalic acid per hour and mg of enzyme. Degradation rates of the PET film of 6.8 microm h -1 were monitored by vertical scanning interferometry. Structural analysis indicated the importance of leucine at position 210 for the extraordinarily high PET-hydrolyzing activity of PHL7. Within 24 h, 0.6 mg enzyme g PET -1 completely degraded post-consumer thermoform PET packaging in an aqueous buffer at 70 degreesC without any energy-intensive pretreatments. Terephthalic acid recovered from the enzymatic hydrolysate was used to synthesize virgin PET, demonstrating the potential of polyester hydrolases as catalysts in sustainable PET recycling processes with a low carbon footprint.