Hydrolysis of cholesteryl esters and triglycerides in the lysosome is performed by lysosomal acid lipase (LAL). In this study we have investigated how 23 previously identified missense mutations in the LAL gene (LIPA) (OMIM# 613497) affect the structure of the protein and thereby disrupt LAL activity. Moreover, we have performed transfection studies to study intracellular transport of the 23 mutants. Our main finding was that most pathogenic mutations result in defective enzyme activity by affecting the normal folding of LAL. Whereas, most of the mutations leading to reduced stability of the cap domain did not alter intracellular transport, nearly all mutations that affect the stability of the core domain gave rise to a protein that was not efficiently transported from the endoplasmic reticulum (ER) to the Golgi apparatus. As a consequence, ER stress was generated that is assumed to result in ER-associated degradation of the mutant proteins. The two LAL mutants Q85K and S289C were selected to study whether secretion-defective mutants could be rescued from ER-associated degradation by the use of chemical chaperones. Of the five chemical chaperones tested, only the proteasomal inhibitor MG132 markedly increased the amount of mutant LAL secreted. However, essentially no increased enzymatic activity was observed in the media. These data indicate that the use of chemical chaperones to promote the exit of folding-defective LAL mutants from the ER, may not have a great therapeutic potential as long as these mutants appear to remain enzymatically inactive.
        
Title: Prevalence of cholesteryl ester storage disease among hypercholesterolemic subjects and functional characterization of mutations in the lysosomal acid lipase gene Vinje T, Wierod L, Leren TP, Strom TB Ref: Mol Genet Metab, 123:169, 2018 : PubMed
Lysosomal acid lipase hydrolyzes cholesteryl esters and triglycerides contained in low density lipoprotein. Patients who are homozygous or compound heterozygous for mutations in the lysosomal acid lipase gene (LIPA), and have some residual enzymatic activity, have cholesteryl ester storage disease. One of the clinical features of this disease is hypercholesterolemia. Thus, patients with hypercholesterolemia who do not carry a mutation as a cause of autosomal dominant hypercholesterolemia, may actually have cholesteryl ester storage disease. In this study we have performed DNA sequencing of LIPA in 3027 hypercholesterolemic patients who did not carry a mutation as a cause of autosomal dominant hypercholesterolemia. Functional analyses of possibly pathogenic mutations and of all mutations in LIPA listed in The Human Genome Mutation Database were performed to determine the pathogenicity of these mutations. For these studies, HeLa T-REx cells were transiently transfected with mutant LIPA plasmids and Western blot analysis of cell lysates was performed to determine if the mutants were synthesized in a normal fashion. The enzymatic activity of the mutants was determined in lysates of the transfected cells using 4-methylumbelliferone-palmitate as the substrate. A total of 41 mutations in LIPA were studied, of which 32 mutations were considered pathogenic by having an enzymatic activity <10% of normal. However, none of the 3027 hypercholesterolemic patients were homozygous or compound heterozygous for a pathogenic mutation. Thus, cholesteryl ester storage disease must be a very rare cause of hypercholesterolemia in Norway.
Cholesteryl ester storage disease (CESD) and Wolman disease (WD) are both autosomal recessive disorders associated with reduced activity of lysosomal acid lipase (LAL), that leads to the tissue accumulation of cholesteryl esters in endosomes and lysosomes. WD is caused by genetic defects of LAL that leave no residual enzymatic activity, while in CESD patients a residual LAL activity can be identified. We have analyzed the LAL cDNA in three CESD patients from two nonrelated families and identified the mutations responsible for the disease. The associated genetic defects characterized revealed compound heterozygosity for a splice defect leading to skipping of exon 8, due to a G-->A transition at position -1 of the exon 8 splice donor site, and a point mutation leading to a Hisl08Pro change (CAT-->CCT) in two patients (siblings) with mild CESD phenotype. A further CESD patient was hemizygous for a His108-->Arg missense mutation (CAT-->CGT) in combination with a partial deletion of the LAL gene and was affected more severely. Expression of the LAL enzymes with the His108-->Pro and His108-->Arg mutation in insect cells revealed residual enzymatic activities of 4.6% versus 2.7%, respectively, compared with controls. Therefore, His108 seems to play a crucial role in folding or catalytic activity of the lysosomal acid lipase. This is the first description of two different, naturally occurring mutations involving the same amino acid residue in the lysosomal acid lipase in unrelated CESD patients. Moreover, our results demonstrate that the variable manifestation of CESD can be explained by mutation-dependent, variable inactivation of the LAL enzyme.