Title: Polymorphism in the acetylcholinesterase gene of Musca domestica L. field populations in Turkey Baskurt S, Taskin BG, Dogac E, Taskin V Ref: J Vector Ecol, 36:248, 2011 : PubMed
Acetylcholinesterase (AChE), encoded by the Ace gene, is the primary target of organophosphates (OPs) and carbamates (CBs) in insects. Ace mutations have been identified in OP and CB resistant strains of Musca domestica. In this study, the Ace gene was partially amplified and sequenced at amino acid positions 260, 342, and 407 to determine the frequencies of these mutations in housefly samples collected from farms and garbage disposal sites of 16 provinces in the Aegean and Mediterranean regions of Turkey. In addition, the percent remaining AChE activities in these samples were assayed by using three OPs (malaoxon, paraoxon, and dichlorvos) and one CB (carbaryl) compound as inhibitors. In all the analyzed samples, 13 different combinations at the three amino acid positions were identified and the L/V260-A/G342-F/Y407 combination was found in the highest frequency. No susceptible individual was detected. The highest mean percent remaining AChE activities were detected in the individuals having the L260-A/G342-F/Y407 genotype when malaoxon and paraoxon were used as inhibitors and in the individuals with the L260-A342-F/Y407 combination when dichlorvos and carbaryl were used as inhibitors. The obtained data were heterogeneous and there was no exact correlation between the molecular genetic background and the resistance phenotypes of the flies. The findings of this study at the molecular and biochemical levels indicate the presence of significant control problems in the field.
        
Title: Variation of Musca domestica L. acetylcholinesterase in Danish housefly populations Kristensen M, Huang J, Qiao CL, Jespersen JB Ref: Pest Manag Sci, 62:738, 2006 : PubMed
Anti-cholinesterase resistance is in many cases caused by modified acetylcholinesterase (MACE). A comparison was made of toxicological data and AChE activity gathered from 21 field populations and nine laboratory strains of houseflies, Musca domestica L., to elucidate the best way of generating data to provide advice for management strategies and gathering information for resistance risk assessment on the organophosphates azamethiphos and dimethoate and the carbamate methomyl, which have been the primary insecticides used against adult houseflies in Denmark. Cluster analysis was performed and > 2000 houseflies were assigned to one of three phenotypes based on total acetylcholinesterase activity as well as inhibition by azamethiphos, methomyl or omethoate. A cluster, i.e. a phenotype, with high total AChE activity and high sensitivity to azamethiphos and less sensitivity to inhibition by methomyl and omethoate was shown to be linked to methomyl resistance. It was not possible to define any clusters that could be linked to azamethiphos or dimethoate resistance. The five mutations V180L, G262A, G262V, F327Y and G365A causing anticholinesterase resistance in houseflies were all identified in the Danish housefly strains. The data are very heterogeneous, and a correlation of molecular genetic background and resistance of phenotypes is not obvious with the available data.
Acetylcholinesterase (AChE) insensitive to organophosphate and carbamate insecticides has been identified as a major resistance mechanism in numerous arthropod species. However, the associated genetic changes have been reported in the AChE genes from only three insect species; their role in conferring insecticide insensitivity has been confirmed, using functional expression, only for those in Drosophila melanogaster. The housefly, Musca domestica, was one of the first insects shown to have this mechanism; here we report the occurrence of five mutations (Val-180-->Leu, Gly-262-->Ala, Gly-262-->Val, Phe-327-->Tyr and Gly-365-->Ala) in the AChE gene of this species that, either singly or in combination, confer different spectra of insecticide resistance. The baculovirus expression of wild-type and mutated housefly AChE proteins has confirmed that the mutations each confer relatively modest levels of insecticide insensitivity except the novel Gly-262-->Val mutation, which results in much stronger resistance (up to 100-fold) to certain compounds. In all cases the effects of mutation combinations are additive. The mutations introduce amino acid substitutions that are larger than the corresponding wild-type residues and are located within the active site of the enzyme, close to the catalytic triad. The likely influence of these substitutions on the accessibility of the different types of inhibitor and the orientation of key catalytic residues are discussed in the light of the three-dimensional structures of the AChE protein from Torpedo californica and D. melanogaster.
        
Title: Characterization of the acetylcholinesterase gene from insecticide-resistant houseflies (Musca domestica) Huang Y, Qiao C, Williamson MS, Devonshire AL Ref: Chin J Biotechnol, 13:177, 1997 : PubMed
Acetylcholinesterase (AChE) is the target site for the organophosphates and carbamates in insects. Widespread use of these two classes of insecticides has led to the selection of resistance. Target modification was regarded as a molecular mechanism in some resistance species. The altered AChEs with reduced sensitivity to inhibition are related to this resistance. AChE genes from two insecticide-resistant housefly (Musca domestica) strains D3 and Kash were isolated and sequenced using RT-PCR and streptavidin-linked magnetic bead techniques. The cDNAs have a 2082-bp open reading frame from which the complete amino acid sequence of AChE has been deduced. Some differences in nucleotide sequence and four-point mutations of amino acid were found compared to a susceptible strain, i.e., the Cooper strain. Three substitutions are likely to confer insecticide insensitivity, which seems that D3 and Kash belong to CH2 pattern of resistance.