Title: The 'aromatic patch' of three proximal residues in the human acetylcholinesterase active centre allows for versatile interaction modes with inhibitors Ariel N, Ordentlich A, Barak D, Bino T, Velan B, Shafferman A Ref: Biochemical Journal, 335:95, 1998 : PubMed
The role of the functional architecture of the human acetylcholinesterase (HuAChE) active centre in accommodating the non-covalent inhibitors tacrine and huperzine A, or the carbamates pyridostigmine and physostigmine, was analysed using 16 mutants of residues lining the active-centre gorge. Despite the structural diversity of the ligands, certain common properties of the complexes could be observed: (a) replacement of aromatic residues Tyr133, Tyr337 and especially Trp86, resulted in pronounced changes in stability of all the complexes examined; (b) effects due to replacements of the five other aromatic residues along the active-centre gorge, such as the acyl pocket (Phe295, Phe297) or at the peripheral anionic site (Tyr124, Trp286, Tyr341) were relatively small; (c) effects due to substitution of the carboxylic residues in the gorge (Glu202, Glu450) were moderate. These results and molecular modelling indicate that the aromatic side chains of residues Trp86, Tyr133 and Tyr337 form together a continuous 'aromatic patch' lining the wall of the active-centre gorge, allowing for the accommodation of the different ligands via multiple modes of interaction. Studies with HuAChE mutants carrying replacements at positions 86, 133 and 337 indicate that the orientations of huperzine A and tacrine in the HuAChE complexes in solution are significantly different from those observed in X-ray structures of the corresponding complexes with Torpedo californica AChE (TcAChE). These discrepancies may be explained in terms of structural differences between the complexes of HuAChE and TcAChE or, more likely, by the enhanced flexibility of the AChE active-centre gorge in solution as compared with the crystalline state.
        
Title: Amino Acids Determining Specificity to OP-Agents and Facilitating the Aging Process in Human Acetylcholinesterase Ordentlich A, Kronman C, Stein D, Ariel N, Reuveny S, Marcus D, Segall Y, Barak D, Velan B, Shafferman A Ref: In Enzyme of the Cholinesterase Family - Proceedings of Fifth International Meeting on Cholinesterases, (Quinn, D.M., Balasubramanian, A.S., Doctor, B.P., Taylor, P., Eds) Plenum Publishing Corp.:221, 1995 : PubMed
Several of the residues constituting the peripheral anionic site (PAS) in human acetylcholinesterase (HuAChE) were identified by a combination of kinetic studies with 19 single and multiple HuAChE mutants, fluorescence binding studies with the Trp-286 mutant, and by molecular modeling. Mutants were analyzed with three structurally distinct positively charged PAS ligands, propidium, decamethonium, and di(p-allyl-N-dimethylaminophenyl)pentane-3-one (BW284C51), as well as with selective active center inhibitors, hexamethonium and edrophonium. Single mutations of residues Tyr-72, Tyr-124, Glu-285, Trp-286, and Tyr-341 resulted in up to 10-fold increase in inhibition constants for PAS ligands, whereas for multiple mutants up to 400-fold increase was observed. The 6th PAS element residue Asp-74 is unique in its ability to affect conformation of both the active site and the PAS (Shafferman, A., Velan, B., Ordentlich, A., Kronman, C., Grosfeld, H., Leitner, M., Flashner, Y., Cohen, S., Barak, D., and Ariel, N. (1992) EMBO J. 11, 3561-3568) as demonstrated by the several hundred-fold increase in Ki for D74N inhibition by the bisquaternary ligands decamethonium and BW284C51. Based on these studies, singular molecular models for the various HuAChE inhibitor complexes were defined. Yet, for the decamethonium complex two distinct conformations were generated, accommodating the quaternary ammonium group by interactions with either Trp-286 or with Tyr-341. We propose that the PAS consists of a number of binding sites, close to the entrance of the active site gorge, sharing residues Asp-74 and Trp-286 as a common core. Binding of ligands to these residues may be the key to the allosteric modulation of HuAChE catalytic activity. This functional degeneracy is a result of the ability of the Trp-286 indole moiety to interact either via stacking, aromatic-aromatic, or via pi-cation attractions and the involvement of the carboxylate of Asp-74 in charge-charge or H-bond interactions.
Substrate specificity determinants of human acetylcholinesterase (HuAChE) were identified by combination of molecular modeling and kinetic studies with enzymes mutated in residues Trp-86, Trp-286, Phe-295, Phe-297, Tyr-337, and Phe-338. The substitution of Trp-86 by alanine resulted in a 660-fold decrease in affinity for acetythiocholine but had no effect on affinity for the isosteric uncharged substrate (3,3-dimethylbutylthioacetate). The results demonstrate that residue Trp-86 is the anionic site which binds, through cation-pi interactions, the quaternary ammonium of choline, and that of active center inhibitors such as edrophonium. The results also suggest that in the non-covalent complex, charged and uncharged substrates with a common acyl moiety (acetyl) bind to different molecular environments. The hydrophobic site for the alcoholic portion of the covalent adduct (tetrahedral intermediate) includes residues Trp-86, Tyr-337, and Phe-338, which operate through nonpolar and/or stacking interactions, depending on the substrate. Substrates containing choline but differing in the acyl moiety (acetyl, propyl, and butyryl) revealed that residues Phe-295 and Phe-297 determine substrate specificity of the acyl pocket for the covalent adducts. Phe-295 also determines substrate specificity in the non-covalent enzyme substrate complex and thus, the HuAChE F295A mutant exhibits over 130-fold increase in the apparent bimolecular rate constant for butyrylthiocholine compared with wild type enzyme. Reactivity toward specific butyrylcholinesterase inhibitors is similarly dependent on the nature of residues at positions 295 and 297. Amino acid Trp-286 at the rim of the active site "gorge" and Trp-86, in the active center, are essential elements in the mechanism of inhibition by propidium, a peripheral anionic site ligand. Molecular modeling and kinetic data suggest that a cross-talk between Trp-286 and Trp-86 can result in reorientation of Trp-86 which may then interfere with stabilization of substrate enzyme complexes. It is proposed that the conformational flexibility of aromatic residues generates a plasticity in the active center that contributes to the high efficiency of AChE and its ability to respond to external stimuli.