p.E285A Glu285Ala (p.E316A Glu316Ala in primary sequence with 31 amino-acids signal peptide) eripheral Anionic Site;2 to 10 fold increase of inhibition K for PAS ligands
Several of the residues constituting the peripheral anionic site (PAS) in human acetylcholinesterase (HuAChE) were identified by a combination of kinetic studies with 19 single and multiple HuAChE mutants, fluorescence binding studies with the Trp-286 mutant, and by molecular modeling. Mutants were analyzed with three structurally distinct positively charged PAS ligands, propidium, decamethonium, and di(p-allyl-N-dimethylaminophenyl)pentane-3-one (BW284C51), as well as with selective active center inhibitors, hexamethonium and edrophonium. Single mutations of residues Tyr-72, Tyr-124, Glu-285, Trp-286, and Tyr-341 resulted in up to 10-fold increase in inhibition constants for PAS ligands, whereas for multiple mutants up to 400-fold increase was observed. The 6th PAS element residue Asp-74 is unique in its ability to affect conformation of both the active site and the PAS (Shafferman, A., Velan, B., Ordentlich, A., Kronman, C., Grosfeld, H., Leitner, M., Flashner, Y., Cohen, S., Barak, D., and Ariel, N. (1992) EMBO J. 11, 3561-3568) as demonstrated by the several hundred-fold increase in Ki for D74N inhibition by the bisquaternary ligands decamethonium and BW284C51. Based on these studies, singular molecular models for the various HuAChE inhibitor complexes were defined. Yet, for the decamethonium complex two distinct conformations were generated, accommodating the quaternary ammonium group by interactions with either Trp-286 or with Tyr-341. We propose that the PAS consists of a number of binding sites, close to the entrance of the active site gorge, sharing residues Asp-74 and Trp-286 as a common core. Binding of ligands to these residues may be the key to the allosteric modulation of HuAChE catalytic activity. This functional degeneracy is a result of the ability of the Trp-286 indole moiety to interact either via stacking, aromatic-aromatic, or via pi-cation attractions and the involvement of the carboxylate of Asp-74 in charge-charge or H-bond interactions.
Acetylcholinesterases (AChEs) are characterized by a high net negative charge and by an uneven surface charge distribution, giving rise to a negative electrostatic potential extending over most of the molecular surface. To evaluate the contribution of these electrostatic properties to the catalytic efficiency, 20 single- and multiple-site mutants of human AChE were generated by replacing up to seven acidic residues, vicinal to the rim of the active-center gorge (Glu84, Glu285, Glu292, Asp349, Glu358, Glu389 and Asp390), by neutral amino acids. Progressive simulated replacement of these charged residues results in a gradual decrease of the negative electrostatic potential which is essentially eliminated by neutralizing six or seven charges. In marked contrast to the shrinking of the electrostatic potential, the corresponding mutations had no significant effect on the apparent bimolecular rate constants of hydrolysis for charged and non-charged substrates, or on the Ki value for a charged active center inhibitor. Moreover, the kcat values for all 20 mutants are essentially identical to that of the wild type enzyme, and the apparent bimolecular rate constants show a moderate dependence on the ionic strength, which is invariant for all the enzymes examined. These findings suggest that the surface electrostatic properties of AChE do not contribute to the catalytic rate, that this rate is probably not diffusion-controlled and that long-range electrostatic interactions play no role in stabilization of the transition states of the catalytic process.