p.C580A Cys580Ala (p.C611A Cys611Ala in primary sequence with 31 amino-acids signal peptide) Subunit assembly;dimerization deficient mutant are secreted in medium efficiently and undergo terminal glycosylation
Title: Signal-Mediated Cellular Retention and Subunit Assembly of Human Acetylcholinesterase Kronman C, Flashner Y, Shafferman A, Velan B Ref: In Enzyme of the Cholinesterase Family - Proceedings of Fifth International Meeting on Cholinesterases, (Quinn, D.M., Balasubramanian, A.S., Doctor, B.P., Taylor, P., Eds) Plenum Publishing Corp.:293, 1995 : PubMed
Title: Post-Translation Processing of Acetylcholinesterase Velan B, Kronman C, Ordentlich A, Flashner Y, Ber R Ref: In Enzyme of the Cholinesterase Family - Proceedings of Fifth International Meeting on Cholinesterases, (Quinn, D.M., Balasubramanian, A.S., Doctor, B.P., Taylor, P., Eds) Plenum Publishing Corp.:269, 1995 : PubMed
Title: Reversal of signal-mediated cellular retention by subunit assembly of human acetylcholinesterase Velan B, Kronman C, Flashner Y, Shafferman A Ref: Journal of Biological Chemistry, 269:22719, 1994 : PubMed
The interrelationship between signal-mediated endoplasmic reticulum retention and control of subunit assembly in secreted complex proteins was examined in recombinant 293 cells expressing human acetylcholinesterase (HuAChE). This was achieved by analyzing the mutual effects of co-residing retention and dimerization signals on enzyme secretion by transfected cells. The function of putative signals within the COOH-terminal tetrapeptide CSDL of HuAChE was examined by site-directed mutagenesis. The CSDL tetrapeptide carries the free cysteine (Cys-580) involved in subunit assembly, yet it fails to function as a KDEL-type retention signal. This was demonstrated by mutations that increase similarity to the canonical retention signal (substitution of CSDL by KSDL) or those that deviate from it (substitution to CSAL). Cells expressing both types of mutants exhibited cell-associated HuAChE levels identical to that of wild type enzyme. Appendage of an engineered KDEL retention signal to a dimerization-impaired HuA-ChE subunit (the C580A mutant) resulted in intracellular retention of large amounts of fully active enzyme not prone to proteolytic degradation. On the other hand, attachment of KDEL to a native, dimerization-competent HuAChE polypeptide did not lead to intracellular retention and allowed efficient secretion of enzyme to the cell growth medium. Yet, appendage of KDEL to the native HuAChE led to some retardation in the transport of enzyme molecules through the Golgi apparatus, as manifested by increase in cellular population of endo H-resistant dimers, when compared with wild type enzyme. Taken together, these results indicate (alpha) that sub-unit dimerization mediated by the COOH-terminal cysteine of HuAChE can reverse the signal-mediated retention by masking recognition of KDEL by its cognate receptor and (b) that the native sequences of the acetylcholinesterase subunit polypeptide do not appear to function as a coupled retention/dimerization signal in the control of secretion of assembled enzyme molecules.
        
Title: Interrelations between assembly and secretion of recombinant human acetylcholinesterase Kerem A, Kronman C, Bar-Nun S, Shafferman A, Velan B Ref: Journal of Biological Chemistry, 268:180, 1993 : PubMed
Transport and secretion of recombinant human acetylcholinesterase (rHuAChE) were studied in transfected human 293 cells expressing either the oligomerized soluble enzyme or a monomeric mutant derivative in which Cys-580 was substituted by alanine (C580A). In cells expressing the wild-type enzyme, the gradual assembly of newly synthesized intracellular rHuAChE monomers into oligomers occurs within the endoplasmic reticulum. Secretion of mature wild-type enzyme into the medium is efficient and appears to be exclusive to multimeric forms. Consistently, intracellular oligomers, but not monomers, are endoglycosidase H-resistant, indicating that only oligomers undergo terminal glycosylation in the wild-type enzyme. In contrast, in cells expressing the dimerization-defective C580A mutant, newly synthesized rHuAChE monomers undergo terminal glycosylation and are secreted into the medium as efficiently as wild-type multimers. No significant difference between the intracellular transport rates of wild-type rHuAChE oligomers and mutant C580A monomers was revealed by probing with specific lectins. In both systems, transport and processing prior to the trans-Golgi galactosylation compartment appear to be rate-limiting, whereas the following passage to the cell surface is rapid. In conclusion, we suggest that in the presence of a free cysteine at the COOH terminus of the rHuAChE polypeptide, secretion of monomers is not effectuated, whereas in its absence, monomers are exported from the endoplasmic reticulum and are capable of traversing the entire secretory pathway.
        
Title: The effect of elimination of intersubunit disulfide bonds on the activity, assembly, and secretion of recombinant human acetylcholinesterase. Expression of acetylcholinesterase Cys-580----Ala mutant Velan B, Grosfeld H, Kronman C, Leitner M, Gozes Y, Lazar A, Flashner Y, Marcus D, Cohen S, Shafferman A Ref: Journal of Biological Chemistry, 266:23977, 1991 : PubMed
Site-directed mutagenesis was used to study the cysteine residue involved in the assembly of human acetylcholinesterase (HuAChE) catalytic subunits. Substitution of the cysteine at position 580 by alanine resulted in impairment of interchain disulfide bridge formation; the mutagenized enzyme (C580A) was secreted from recombinant cells in the monomeric form and failed to assemble into dimers. The mutant monomeric HuAChE did not differ from the native oligomeric enzyme neither in rate of catalysis nor in affinity to acetylthiocholine. Mutant monomers were also shown to retain the acetylcholinesterase characteristic sensitivity to high substrate concentrations. The mutation did not seem to affect the efficiencies of either synthesis or secretion of recombinant HuAChE polypeptides, as was demonstrated in cell lines derived from human embryonic kidney (293 cells) as well as from a human neuroblastoma (SK-N-SH). Furthermore, the mutation did not lead to an increase in accumulation of intracellular HuAChE polypeptides, suggesting that export of acetylcholinesterase from cells may not be coupled to subunit assembly.