p.A328W/Y332A Ala328Trp/Tyr332Ala (p.A356W/Y360A Ala328Trp/Tyr332Ala in primary sequence with 28 amino-acids signal peptide) Cocaine hydrolysis;CocE 40-fold increased kcat and low increase in Km
Kinetic parameters
|
none
References:
Title: Design of high-activity mutants of human butyrylcholinesterase against (-)-cocaine: structural and energetic factors affecting the catalytic efficiency Zheng F, Yang W, Xue L, Hou S, Liu J, Zhan CG Ref: Biochemistry, 49:9113, 2010 : PubMed
The present study was aimed to explore the correlation between the protein structure and catalytic efficiency of butyrylcholinesterase (BChE) mutants against (-)-cocaine by modeling the rate-determining transition state (TS1), i.e., the transition state for the first step of chemical reaction process, of (-)-cocaine hydrolysis catalyzed by various mutants of human BChE in comparison with the wild type. Molecular modeling of the TS1 structures revealed that mutations on certain nonactive site residues can indirectly affect the catalytic efficiency of the enzyme against (-)-cocaine through enhancing or weakening the overall hydrogen bonding between the carbonyl oxygen of (-)-cocaine benzoyl ester and the oxyanion hole of the enzyme. Computational insights and predictions were supported by the catalytic activity data obtained from wet experimental tests on the mutants of human BChE, including five new mutants reported for the first time. The BChE mutants with at least approximately 1000-fold improved catalytic efficiency against (-)-cocaine compared to the wild-type BChE are all associated with the TS1 structures having stronger overall hydrogen bonding between the carbonyl oxygen of (-)-cocaine benzoyl ester and the oxyanion hole of the enzyme. The combined computational and experimental data demonstrate a reasonable correlation relationship between the hydrogen-bonding distances in the TS1 structure and the catalytic efficiency of the enzyme against (-)-cocaine.
We previously found that injection of a cocaine hydrolase (CocE) engineered from human butyrylcholinesterase will transiently accelerate cocaine metabolism in rats while reducing physiological and behavioral responses. To investigate more extended therapeutic effects, CocE cDNA was incorporated into a replication-incompetent type-5 adenoviral vector with a cytomegalovirus promoter. In rats dosed with this agent (2.2 x 10(9) plaque-forming units), the time course of expression was characterized by reverse transcription polymerase chain reaction for CocE mRNA and by radiometric assay for enzyme activity. Liver and plasma showed comparable expression, beginning 2 days after vector administration and peaking between 5 and 7 days. Plasma CocE content was up to 100 mU/ml, with total cocaine hydrolyzing activity 3000-fold greater than in "empty vector" or untreated controls. This level of expression approximated that found immediately after i.v. injection of purified hydrolase, 3 mg/kg, a dose that shortened cocaine halflife and blunted cardiovascular effects. Sucrose density gradient analysis showed that 96% of the circulating CocE activity was associated with tetrameric enzyme forms, expected to be stable in vivo. Consistent with this expectation, CocE from vector-treated rats showed a plasma t(1/2) of 33 h when reinjected into naive rats. Transduction of another mutant butyrylcholinesterase, Applied Molecular Evolution mutant 359 (AME(359)), caused plasma cocaine hydrolase activity to rise 50,000-fold. At the point of peak AME(359) expression, cocaine was cleared from the blood too rapidly for accurate measurement, and pressor responses to the injection of drug were greatly impaired.
        
Title: Visualizing viral transduction of a cocaine-hydrolyzing, human butyrylcholinesterase in rats Gao Y, Brimijoin S Ref: Chemico-Biological Interactions, 157-158:97, 2005 : PubMed
Human plasma butyrylcholinesterase (BChE) is essential for cocaine detoxification even though its catalytic efficiency for that substrate is relatively poor. Site-directed mutagenesis of this protein has recently been used to obtain much-improved cocaine esterases, one of which we designate CocE. We previously showed that adenoviral transduction of such esterases caused up to 50,000-fold increases in circulating cocaine hydrolase activity, led to drastically shortened cocaine half-life, and blunted the cardiovascular responses to cocaine in rats. In those experiments, gene transduction of cocaine esterase was sustained at high levels for up to 1 week but then declined steeply. Our eventual goal is to use long-term esterase expression as a means of reducing drug reward and extinguishing intake in models of cocaine-addiction. Therefore, we investigated the site of enzyme transduction for clues to the local reactions that may limit the duration of CocE expression. Histological and immunohistochemical observations demonstrated that hepatocytes were the primary focus for transduction of modified human BChE. Rats were administered 2.2 x 10(10) plaque forming units of a replication-incompetent, type-5 adenoviral vector incorporating CocE cDNA. Within days the livers showed intense thiocholine staining for BChE activity. Selective immunohistochemistry for human BChE proved that this activity represented CocE transgene. By 5 days, however, pockets of mononuclear cells had invaded the hepatic parenchyma, and a meshwork of IgM-like immunoreactivity had lined the hepatic sinusoids. These phenomena probably represent early responses of the immune system, either to the transduced CocE or to the hepatocytes producing this protein.
        
Title: Molecular dynamics simulation of cocaine binding with human butyrylcholinesterase and its mutants Hamza A, Cho H, Tai HH, Zhan CG Ref: J Phys Chem B, 109:4776, 2005 : PubMed
Molecular dynamics (MD) simulations were carried out to study cocaine binding with wild-type human butyrylcholinesterase (BChE) and its mutants based on a recently reported X-ray crystal structure of human BChE. For each BChE-cocaine system, we simulated both the nonprereactive and prereactive complexes in water. Despite the significant difference found at the acyl binding pocket, the simulated structures confirm the fundamental structural and mechanistic insights obtained from earlier computational studies of wild-type BChE with cocaine based on a homology model, e.g. the rate-determining step for BChE-catalyzed hydrolysis of biologically active (-)-cocaine is the (-)-cocaine rotation in the active site from the nonprereactive BChE-(-)-cocaine complex to the prereactive complex. It has been demonstrated that the MD simulations on both the nonprereactive and prereactive BChE-cocaine complexes can clearly reveal whether specific mutations produce the desired BChE-(-)-cocaine binding structures in which the (-)-cocaine rotation is less hindered while the required prereactive BChE-(-)-cocaine binding is maintained. Based on the MD simulations, both A328W/Y332A and A328W/Y332G BChE's are expected to have catalytic activity for (-)-cocaine hydrolysis higher than that of wild-type BChE and the activity of A328W/Y332G BChE should be slightly higher than that of A328W/Y332A BChE due to the less-hindered (-)-cocaine rotation in the mutant BChE's. However, the less-hindered (-)-cocaine rotation is only a necessary condition for a higher activity mutant BChE. The (-)-cocaine rotation is also less hindered in A328W/Y332A/Y419S BChE, but (-)-cocaine binds with A328W/Y332A/Y419S BChE in a way that is not suitable for the catalysis. Thus, A328W/Y332A/Y419S BChE is expected to lose the catalytic activity. The computational predictions were confirmed by our experimental kinetic data, demonstrating that the MD simulation-based computational protocol used in this study is reliable in prediction of the catalytic activity of BChE mutants for (-)-cocaine hydrolysis.
        
Title: Cocaine metabolism accelerated by a re-engineered human butyrylcholinesterase Sun H, Shen ML, Pang YP, Lockridge O, Brimijoin S Ref: Journal of Pharmacology & Experimental Therapeutics, 302:710, 2002 : PubMed
Plasma butyrylcholinesterase (BChE) is important in the metabolism of cocaine, but natural human BChE has limited therapeutic potential for detoxication because of low catalytic efficiency with cocaine. Here we report pharmacokinetics of cocaine in rats treated with A328W/Y332A BChE, an excellent cocaine hydrolase designed with the aid of molecular modeling. Compared with wild-type BChE, this enzyme hydrolyzes cocaine with 40-fold improved k(cat) (154 min(-1) versus 4.1 min(-1)) and only slightly increased K(M) (18 microM versus 4.5 microM). In rats given this hydrolase (3 mg/kg i.v.) 10 min before cocaine challenge (6.8 mg/kg i.v.), cocaine half-life was reduced from 52 min to 18 min. Mirroring the reductions of plasma cocaine were large increases in benzoic acid, a product of BChE-mediated cocaine hydrolysis. All other pharmacokinetic parameters confirmed a large, dose-dependent acceleration of cocaine removal by the injected cocaine hydrolase. These results show that A328W/Y332A, an efficient cocaine hydrolase in vivo as well as in vitro, might promote cocaine detoxication in a clinical setting.
To address the problem of acute cocaine overdose, we undertook molecular engineering of butyrylcholinesterase (BChE) as a cocaine hydrolase so that modest doses could be used to accelerate metabolic clearance of this drug. Molecular modeling of BChE complexed with cocaine suggested that the inefficient hydrolysis (k(cat) = 4 min(-1)) involves a rotation toward the catalytic triad, hindered by Tyr332. To eliminate rotational hindrance and retain substrate affinity, we introduced two amino acid substitutions (Ala328Trp/Tyr332Ala). The resulting mutant BChE reduced cocaine burden in tissues, accelerated plasma clearance by 20-fold, and prevented cocaine-induced hyperactivity in mice. The enzyme's kinetic properties (k(cat) = 154 min(-1), K(M) = 18 microM) satisfy criteria suggested previously for treating cocaine overdose (k(cat) >120 min(-1), K(M) < 30 microM). This success demonstrates that computationally guided mutagenesis can generate functionally novel enzymes with clinical potential.