(not Torpedo_number 257) falls in an insertion not present in torpedo AChE
Kinetic parameters
|
none
References:
Title: Inhibitors of different structure induce distinguishing conformations in the omega loop, Cys 69- Cys 96, of mouse acetylcholinesterase Shi J, Radic Z, Taylor P Ref: Journal of Biological Chemistry, 277:43301, 2002 : PubMed
We have shown previously that association of reversible active site ligands induces a conformational change in an omega loop (Omega loop), Cys(69)-Cys(96), of acetylcholinesterase. The fluorophore acrylodan, site-specifically incorporated at positions 76, 81, and 84, on the external portion of the loop not lining the active site gorge, shows changes in its fluorescence spectrum that reflect the fluorescent side chain moving from a hydrophobic environment to become more solvent-exposed. This appears to result from a movement of the Omega loop accompanying ligand binding. We show here that the loop is indeed flexible and responds to conformational changes induced by both active center and peripheral site inhibitors (gallamine and fasciculin). Moreover, phosphorylation and carbamoylation of the active center serine shows distinctive changes in acrylodan fluorescence spectra at the Omega loop sites, depending on the chirality and steric dimensions of the covalently conjugated ligand. Capping of the gorge with fasciculin, although it does not displace the bound ligand, dominates in inducing a conformational change in the loop. Hence, the ligand-induced conformational changes are distinctive and suggest multiple loop conformations accompany conjugation at the active center serine. The fluorescence changes induced by the modified enzyme may prove useful in the detection of organophosphates or exposure to cholinesterase inhibitors.
        
Title: Reversibly bound and covalently attached ligands induce conformational changes in the Omega loop, Cys 69-Cys 96, of mouse acetylcholinesterase Shi J, Boyd AE, Radic Z, Taylor P Ref: Journal of Biological Chemistry, 276:42196, 2001 : PubMed
We have used a combination of cysteine substitution mutagenesis and site-specific labeling to characterize the structural dynamics of mouse acetylcholinesterase (mAChE). Six cysteine-substituted sites of mAChE (Leu(76), Glu(81), Glu(84), Tyr(124), Ala(262), and His(287)) were labeled with the environmentally sensitive fluorophore, acrylodan, and the kinetics of substrate hydrolysis and inhibitor association were examined along with spectroscopic characteristics of the acrylodan-conjugated, cysteine-substituted enzymes. Residue 262, being well removed from the active center, appears unaffected by inhibitor binding. Following the binding of ligand, hypsochromic shifts in emission of acrylodan at residues 124 and 287, located near the perimeter of the gorge, reflect the exclusion of solvent and a hydrophobic environment created by the associated ligand. By contrast, the bathochromic shifts upon inhibitor binding seen for acrylodan conjugated to three omega loop (Omega loop) residues 76, 81, and 84 reveal that the acrylodan side chains at these positions are displaced from a hydrophobic environment and become exposed to solvent. The magnitude of fluorescence emission shift is largest at position 84 and smallest at position 76, indicating that a concerted movement of residues on the Omega loop accompanies gorge closure upon ligand binding. Acrylodan modification of substituted cysteine at position 84 reduces ligand binding and steady-state kinetic parameters between 1 and 2 orders of magnitude, but a similar substitution at position 81 only minimally alters the kinetics. Thus, combined kinetic and spectroscopic analyses provide strong evidence that conformational changes of the Omega loop accompany ligand binding.
        
Title: Probing the active center Gorge of acetylcholinesterase by fluorophores Linked to substituted cysteines Boyd AE, Marnett AB, Wong L, Taylor P Ref: Journal of Biological Chemistry, 275:22401, 2000 : PubMed
To examine the influence of individual side chains in governing rates of ligand entry into the active center gorge of acetylcholinesterase and to characterize the dynamics and immediate environment of these residues, we have conjugated reactive groups with selected charge and fluorescence characteristics to cysteines substituted by mutagenesis at specific positions on the enzyme. Insertion of side chains larger than in the native tyrosine at position 124 near the constriction point of the active site gorge confers steric hindrance to affect maximum catalytic throughput (k(cat)/K(m)) and rates of diffusional entry of trifluoroketones to the active center. Smaller groups appear not to present steric constraints to entry; however, cationic side chains selectively and markedly reduce cation ligand entry through electrostatic repulsion in the gorge. The influence of side chain modification on ligand kinetics has been correlated with spectroscopic characteristics of fluorescent side chains and their capacity to influence the binding of a peptide, fasciculin, which inhibits catalysis peripherally by sealing the mouth of the gorge. Acrylodan conjugated to cysteine was substituted for tyrosine at position 124 within the gorge, for histidine 287 on the surface adjacent to the gorge and for alanine 262 on a mobile loop distal to the gorge. The 124 position reveals the most hydrophobic environment and the largest hypsochromic shift of the emission maximum with fasciculin binding. This finding likely reflects a sandwiching of the acrylodan in the complex with the tip of fasciculin loop II. An intermediate spectral shift is found for the 287 position, consistent with partial occlusion by loops II and III of fasciculin in the complex. Spectroscopic properties of the acrylodan at the 262 position are unaltered by fasciculin addition. Hence, combined spectroscopic and kinetic analyses reveal distinguishing characteristics in various regions of acetylcholinesterase that influence ligand association.