AIMS: In mammalian myocardium acetylcholine (ACh), neurotransmitter which strikingly affects the cardiomyocytes, can be released from the neurons both via quantal (vesicular) and nonquantal (non-vesicular) mechanism of secretion. Non-quantal release is continuous, independent on vagus activity and provides accumulation of ACh in myocardium in the presence of acetylcholinesterase (AChE) inhibitors. The aim of the present study was to determine the source of non-quantal ACh in isolated atrial myocardium of adult and newborn rats. MAIN METHODS: Standard microelectrode technique was used to determine the cholinergic changes of electrical activity under the action of AChE inhibitor paraoxon, which correlates with the intensity of nonquantal ACh release. KEY FINDINGS: In adult rats selective inhibitor of neuronal choline uptake system hemicholinium III (10(-5) M) decreased all effects of paraoxon (5 x 10(-6) M) more than twofold. Inhibitor of polyspecific 3 organic cation transporters corticosterone (10(-4) M) also significantly decreased effects of paraoxon in adult rats, indicating that non-neuronal ACh, which is synthesized by cardiomyocytes, takes part in accumulation of ACh in the myocardium. When hemicholinium III and corticosterone were applied together, paraoxon effects in adult atrial myocardium were suppressed almost completely. In newborn rats cardiomyocytes do not excrete ACh. In accordance with this fact hemicholinium III completely abolished effects of paraoxon in newborn myocardium, while corticosterone was ineffective. Thus, non-quantal ACh is released both from cholinergic nerves and cardiomyocytes in adult rat myocardium, while it has exclusively neuronal nature in newborns. SIGNIFICANCE: The study demonstrates dual neuronal and non-neuronal nature of non-quantal ACh in the heart.
AIMS: In patients with bladder outlet obstruction (BOO), dysregulation of bladder afferent neurons seems to contribute to irritative symptoms. Cholinergic receptors, addressed by both neuronal and non-neuronal (urothelial) acetylcholine, can alter neuronal excitability. Thus we investigated the influence of BOO on the expression of muscarinic (mAChR) and nicotinic (nAChR) acetylcholine receptors in the lumbosacral dorsal root ganglia (DRG) of mice. MAIN METHODS: BOO was induced in 13 C57/BL6 mice by partial suturing of the urethra. Eleven mice were sham-operated (loose/freely movable suture around the urethra), and eleven untreated mice served as controls. Cystometry was performed five weeks later in conscious mice. DRG at segmental levels L5-S2 were dissected and real-time quantitative PCR was performed. Expression of mAChR subtypes M1-M5 and nAChR subunits alpha2-7, alpha9-10, beta2-4 was examined. KEY FINDINGS: Expression of all mAChR subtypes and nAChR subunits alpha3-7, alpha10, beta2-4 was detected. Expression of alpha2 and alpha9 was absent. Rank order of expression was M2>M4>M3>M5>M1, alpha3>/=alpha6>alpha7>alpha4>alpha10>alpha5 and beta2>beta4>beta3 in untreated animals. BOO mice presented distinct obstruction with development of residual urine. Sham mice showed only minimal BOO. Relative mRNA expression of nAChR subunits revealed significant reduction of alpha3, alpha5, alpha6, alpha10 and beta4 in sham-operated vs. untreated mice. In BOO vs. sham-operated mice, reduction of nAChR subunits alpha10 (p=0.038) and alpha5 (p=0.053) was found. SIGNIFICANCE: BOO has a considerable impact on nAChR, but not on mAChR mRNA expression in sensory neurons. We hypothesize that a reduction in mRNA expression of nAChR subunits represents a link to altered sensitivity under non-obstructive conditions.
        
Title: Does bladder outlet obstruction alter the non-neuronal cholinergic system of the human urothelium? Bschleipfer T, Weidner W, Kummer W, Lips KS Ref: Life Sciences, 91:1082, 2012 : PubMed
AIMS: Alterations of the bladder sensory system are considered to contribute to detrusor overactivity (DO) when patients suffer from bladder outlet obstruction (BOO). The urothelium is one part of this sensory system and it harbors a non-neuronal cholinergic system (NNCS). We aimed to investigate if BOO causes alterations in the NNCS. MAIN METHODS: Urothelial specimens were collected by endoscopy from six male controls and eight male patients suffering from BOO and DO. The samples were examined by immunofluorescence (IF) and real-time RT-PCR for high-affinity choline transporter-1 (CHT1), choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT), organic cation transporters OCT1-3, muscarinic receptor (mAChR) subtypes M1-M5 and nicotinic receptor (nAChR) subunits alpha7, alpha9 and alpha10. KEY FINDINGS: ChAT, VAChT and OCT2 are not present in the male urothelium. Real-time RT-PCR and IF detected all other investigated targets. Rank order of expression was M2>>M3=M5>M4=M1 for mAChR subtypes and alpha7>>alpha10>alpha9 for nAChR subunits. Statistical analysis of RT-PCR results did not detect significant differences between patients and controls. Only IF detected differences between both groups: alpha9-Immunolabeling was increased in all BOO/DO patients. SIGNIFICANCE: BOO does not induce considerable alterations of the human urothelial NNCS on mRNA level. Expression of mAChRs, CHT1, OCT1 and OCT3 is not significantly affected by BOO. Thus, transport mechanisms for choline and acetylcholine (ACh) stay unaltered. BOO increases immunolabeling of alpha9-nAChR but whether this sole finding contributes to the onset of DO seems questionable. Comparing the present results with our previous work, the urothelial NNCS does not differ between men and women.
AIMS: Cholinergic signaling, particularly in response to non-physiological ligands like nicotine, stimulates carcinogenesis of a variety of tissue types including epithelia of the cervix uteri. Cholinergic signaling is mediated by nicotinic acetylcholine receptors (nAChRs), which are pentamers formed by subsets of 16 nAChR subunits. Recent literature suggests that single nucleotide polymorphisms (SNPs) of some of these subunits, notably alpha5, are risk factors for developing lung cancer in smokers as well as in non-smokers. MAIN METHODS: We have studied the prevalence of four SNPs in the alpha5, alpha9, and beta1 subunits, which are expressed in cervical cells, in 456 patients with cervical cancers, precursor lesions, and healthy controls from two cohorts in Mexico. KEY FINDINGS: A SNP in the alpha9 subunit, the G allele of rs10009228 (alpha9, A>G) shows a significant trend in the combined cohort, indicating that this allele constitutes a risk factor for neoplastic progression. The A allele of the SNP rs16969968 (alpha5, G>A), which correlates with the development of lung cancer, shows a non-significant trend to be associated with cervical lesions. Two other SNPs, rs55633891 (alpha9, C>T) and rs17856697 (beta1, A>G), did not exhibit a significant trend. SIGNIFICANCE: Our study points to a potential risk factor of cervical carcinogenesis with importance for DNA diagnosis and as a target for intervention.
        
Title: New associations of the genetic polymorphisms in nicotinic receptor genes with the risk of lung cancer Chikova A, Bernard HU, Shchepotin IB, Grando SA Ref: Life Sciences, 91:1103, 2012 : PubMed
AIMS: Previous studies revealed association of lung cancer risk with single nucleotide polymorphisms (SNPs) in chromosome 15q25 region containing CHRNA5-CHRNA3-CHRNB4 nicotinic acetylcholine receptor (nAChR) subunit gene cluster. The genetic variations in other lung nAChRs remained unknown. In this study, we perform case-control analysis of CHRNA9 and CHRNA3 genes using 340 non-small cell lung cancer cases and 435 controls. MAIN METHODS: All exons, 3'UTR, intron 1 and parts of other introns surrounding exons 2-5 of CHRNA9 gene as well as exons 2, 3 of CHRNA3 gene and parts of surrounding intronic regions were sequenced. The study was controlled for gender, age and ethnicity related differences. Each SNP in analyzed groups was assessed by allele frequency, genotype distribution and haplotype analysis. KEY FINDINGS: The case-control analysis revealed that an increased risk is associated with two SNPs in CHRNA9, rs56159866 and rs6819385, and one in CHRNA3, rs8040868. The risk was reduced for three SNPs in CHRNA9, rs55998310, rs56291234, and newly discovered rs182073550, and also in carriers of the haplotype NP_060051.2 containing ancestral N442 variant of alpha9. SIGNIFICANCE: The nonsynonymous substitutions can produce receptors exhibiting unique ligand-binding and downstream signaling characteristics, synonymous as well all intronic SNPs may affect protein production at the transcriptional and/or translational levels, or just manifest association with cancer by genetic linkage to other alleles. Elucidation of the mechanisms by which individual genetic variations in alpha9 affect predisposition to lung cancer may lead to development of personalized approaches to cancer prevention and treatment as well as protection against tobacco consumption.
AIMS: In this study, we evaluated the ability of differentiating embryonic chick DRG neurons to release and respond to acetylcholine (ACh). In particular, we investigated the neuronal soma and neurites as sites of ACh release, as well as the mechanism(s) underlying this release. MAIN METHODS: ACh release from DRG explants in the Campenot chambers was measured by a chemiluminescent assay. Real-time PCR analysis was used to evaluate the expression of ChAT, VAChT, mediatophore and muscarinic receptor subtypes in DRGs at different developmental stages. KEY FINDINGS: We found that ACh is released both within the central and lateral compartments of the Campenot chambers, indicating that ACh might be released from both the neuronal soma and fibers. Moreover, we observed that the expression of the ChAT and mediatophore increases during sensory neuron differentiation and during the post-hatching period, whereas VAChT expression decreases throughout development. Lastly, the kinetics of the m2 and m3 transcripts appeared to change differentially compared to the m4 transcript during the same developmental period. SIGNIFICANCE: The data obtained demonstrate that the DRG sensory neurons are able to release ACh and to respond to ACh stimulation. ACh is released both by the soma and neurite compartments. The contribution of the mediatophore to ACh release appears to be more significant than that of VAChT, suggesting that the non-vesicular release of ACh might represent the preferential mechanism of ACh release in DRG neurons and possibly in non-cholinergic systems.
        
Title: Nicotinic acetylcholine receptor stimulation impairs epidermal permeability barrier function and recovery and modulates cornified envelope proteins Curtis BJ, Plichta JK, Blatt H, Droho S, Griffin TM, Radek KA Ref: Life Sciences, 91:1070, 2012 : PubMed
AIM: To characterize how nicotinic acetylcholine receptors (nAChRs) influence epidermal barrier function and recovery following prolonged stress or direct nAChR activation or antagonism. MAIN METHODS: Mice were subjected to psychological stress or treated topically with nAChR agonist or antagonist for 3 days. We assessed barrier permeability and recovery by measuring transepidermal water loss (TEWL) before and after barrier disruption. In parallel, we analyzed the production and localization of several epidermal cornified envelope proteins in mouse skin and in human EpiDerm organotypic constructs stimulated with a nAChR agonist (nicotine) and/or a nAChR selective antagonist (alpha-bungarotoxin). KEY FINDINGS: We determined that psychological stress in mice impairs barrier permeability function and recovery, an effect that is reversed by application of the alpha7 selective nAChR antagonist, alpha-bungarotoxin (Bung). In the absence of stress, both topical nicotine or Bung treatment alone impaired barrier permeability. We further observed that stress, topical nicotine, or topical Bung treatment in mice influenced the abundance and/or localization of filaggrin, loricrin, and involucrin. Similar alterations in these three major cornified envelope proteins were observed in human EpiDerm cultures. SIGNIFICANCE: Perceived psychological stress and nicotine usage can both initiate or exacerbate several dermatoses by altering the cutaneous permeability barrier. Modulation of nAChRs by topical agonists or antagonists may be used to improve epidermal barrier function in skin diseases associated with defects in epidermal barrier permeability.
The gut immune system shares many signalling molecules and receptors with the autonomic nervous system. A good example is the vagal neurotransmitter acetylcholine (ACh), for which many immune cell types express cholinergic receptors (AChR). In the last decade the vagal nerve has emerged as an integral part of an immune regulation network via its release of ACh; a system coined "the cholinergic anti-inflammatory reflex". The perspective of cholinergic immune regulation in the gut mucosa has been widened by the recent discovery of populations of ACh producing immune cells in the spleen and other organs. As such, ACh, classically referred to as neurotransmitter, may serve a much broader function as bi-directional signalling molecule between neurons and non-neuronal cell types of the immune system.
AIMS: In the present work we investigated the expression of M2 muscarinic receptor subtype in two glioblastoma cell lines and its role in the control of cell proliferation. MAIN METHODS: The M2 receptor transcript and protein expression was studied using RT-PCR and western blot analysis. (3)[H]-thymidine incorporation was used to evaluate cell proliferation in the presence or in the absence of M(2) agonist arecaidine. KEY FINDINGS: We demonstrated that M(2) receptor is expressed in both cell lines, although U251 cells show a higher expression level, compared to U87 cells. The activation of M(2) receptors by the agonist arecaidine decreases cell growth in a dose and time dependent manner. The anti-proliferative effect of arecaidine is also confirmed by the significant decrease of (3)[H]-thymidine incorporation in both cell lines. Moreover the M2 antagonist gallamine counteracts the arecaidine effects confirming M2 receptor involvement in glioma cell growth inhibition. SIGNIFICANCE: These data suggest a role for M2 receptors in the inhibition of glioma cell proliferation and the possibility of exploiting these receptors as new promising tools for glioblastoma therapy.
        
Title: Presence of ChAT mRNA and a very marked alpha7nAChR immunoreaction in the synovial lining layer of the knee joint Forsgren S Ref: Life Sciences, 91:1043, 2012 : PubMed
AIMS: The aim was to examine if there is evidence of acetylcholine (ACh) production within the synovial lining layer and to examine the pattern of alpha7nAChR expression in the layer. This layer is of relevance clinically as it becomes thickened in response to both rheumatoid arthritis (RA) and osteoarthritis (OA) and as it has been shown to produce proteases that are involved in the cartilage destruction. MAIN METHODS: Synovial tissue specimens from the knee joint of patients with RA and OA undergoing prosthetic surgery were examined. In situ hybridization and immunohistochemistry were used for the evaluation of ChAT reaction patterns. Immunohistochemistry was utilized for demonstration of activity of alpha7nAChR. KEY FINDINGS: There were ChAT mRNA reactions in the synovial lining layer of both patient categories. On the other hand, no ChAT immunoreactions were detected in the layer. There was a very marked alpha7nAChR immunoreaction. SIGNIFICANCE: There is a potential for ACh production within the synovial lining layer as there are ChAT mRNA reactions. However, the level of ACh production is apparently very low. It is thus possible that there is a down-regulation of ACh production but an apparent upregulation in expression level of alpha7nAChR. Based on the knowledge that the non-neuronal cholinergic system can have anti-inflammatory effects, the low level of ACh production in the synovial lining layer can be a drawback for the arthritic joints.
AIMS: Muscarinic and nicotinic acetylcholine (ACh) receptors are expressed in immune cells. ACh synthesized by choline acetyltransferase (ChAT) and released in T cells binds to these receptors. Furthermore, we have recently demonstrated the involvement of mediatophore, a homooligomer of a 16-kDa proteolipid subunit of vacuolar H(+)-ATPase, in ACh release from T cells. In this study, we investigated the effects of phorbol 12-myristate 13-acetate (PMA), dibutyryl cAMP (dbcAMP) and FK506, an immunosuppressant calcineurin inhibitor, on lymphocytic cholinergic activity in T cells. MAIN METHODS: We determined the content and release of ACh in human leukemic T cell line MOLT-3 cells using a sensitive and specific radioimmunoassay for ACh. In addition, expression of ChAT mRNA and ChAT activity were investigated using reverse-transcription-polymerase chain reaction and Fonnum method, respectively. KEY FINDINGS: Phytohemagglutinin (PHA), a T-cell activator, up-regulated ChAT mRNA expression, synthesis and release of ACh. PMA, a protein kinase C (PKC) activator, and dbcAMP, a protein kinase A (PKA) activator, also increased ChAT activity and ACh synthesis by up-regulating ChAT gene expression. FK506 inhibited PHA-induced up-regulation of ChAT mRNA expression, suggesting the involvement of calcineurin-mediated pathways in ChAT gene transcription. SIGNIFICANCE: Activation of PKC and PKA up-regulates ACh synthesis in T cells, and immunological activation triggers ChAT gene transcription through calcineurin-mediated pathways.
AIMS: To evaluate the pathobiologic effects of long-term treatment with nicotine of A/J mice susceptible to tobacco-induced lung carcinogenesis. MAIN METHODS: Experimental group of mice received subcutaneous injections of the LD(50) dose of (-)nicotine hydrogen tartrate of 3 mg/kg/day, 5 days per week for 24 months, and control group received the vehicle phosphate-buffered saline. KEY FINDINGS: Nicotine treated mice, 78.6%, but none of control of mice, developed neoplasms originating from the uterus or skeletal muscle. Examination of the uterine neoplasms revealed leiomyosarcomas, composed of whorled bundles of smooth-muscle like cells with large and hyperchromatic nuclei. Sections of the thigh neoplasms revealed densely cellular tumors composed of plump spindle cells, with occasional formation of 'strap' cells, containing distorted striations. Both neoplasms were positive for desmin staining. A solitary pulmonary adenoma with papillary architecture also occurred in one nicotine treated mouse. Experimental mice also developed transient balding starting as small patches of alopecia that progressed to distinct circumscribed areas of complete hair loss or large areas of diffuse hair loss. SIGNIFICANCE: We demonstrate for the first time that chronic nicotine treatment can induce the development of muscle sarcomas as well as transient hair loss. These findings may help explain the association of childhood rhabdomyosarcoma with parental smoking and earlier onset of balding in smokers. It remains to be determined whether the pathobiologic effects of nicotine result from its receptor-mediated action and/or its tissue metabolites cotinine and N'-nitrosonornicotine, or toxic effects of reactive oxygen species activated due to possible intracellular accumulation of nicotine.
Title: Nicotine-induced activation of soluble adenylyl cyclase participates in ion transport regulation in mouse tracheal epithelium Hollenhorst MI, Lips KS, Kummer W, Fronius M Ref: Life Sciences, 91:1009, 2012 : PubMed
AIMS: Functional nicotinic acetylcholine receptors (nAChR) have been identified in airway epithelia and their location in the apical and basolateral membrane makes them targets for acetylcholine released from neuronal and non-neuronal sources. One function of nAChR in airway epithelia is their involvement in the regulation of transepithelial ion transport by activation of chloride and potassium channels. However, the mechanisms underlying this nicotine-induced activation of ion transport are not fully elucidated. Thus, the aim of this study was to investigate the involvement of adenylyl cyclases in the nicotine-induced ion current in mouse tracheal epithelium. MAIN METHODS: To evaluate the nicotine-mediated changes of transepithelial ion transport processes electrophysiological Ussing chamber measurements were applied and nicotine-induced ion currents were recorded in the absence and presence of adenylyl cyclase inhibitors. KEY FINDINGS: The ion current changes induced by nicotine (100 muM, apical) were not altered in the presence of high doses of atropine (25 muM, apical and basolateral), underlining the involvement of nAChR. Experiments with the transmembrane adenylyl cyclase inhibitor 2'5'-dideoxyadenosine (50 muM, apical and basolateral) and the soluble adenylyl cyclase inhibitor KH7 (10 muM, apical and basolateral) both reduced the nicotine-mediated ion current to a similar extent. Yet, a statistically significant reduction was obtained only in the experiments with KH7. SIGNIFICANCE: This study indicates that nicotine binding to nAChR in mouse tracheal epithelium activates transepithelial ion transport involving adenylyl cyclase activity. This might be important for novel therapeutic strategies targeting epithelial ion transport mediated by the non-neuronal cholinergic system.
        
Title: Reciprocal effects of NNK and SLURP-1 on oncogene expression in target epithelial cells Kalantari-Dehaghi M, Bernard HU, Grando SA Ref: Life Sciences, 91:1122, 2012 : PubMed
AIMS: To elucidate how the nicotinic acetylcholine receptors expressed on bronchial and oral epithelial cells targeted by the tobacco nitrosamine (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone) (NNK) facilitate carcinogenic transformation. MAIN METHODS: Since NNK-dependent transformation can be abolished by the nicotinergic secreted mammalian Ly-6/urokinase plasminogen activator receptor related protein-1 (SLURP-1), we compared effects of NNK and recombinant (r)SLURP-1 on the expression of genes related to tumorigenesis in human immortalized bronchial and oral epithelial cell lines BEP2D and Het-1A, respectively. KEY FINDINGS: NNK stimulated expression of oncogenic genes, including MYB and PIK3CA in BEP2D, ETS1, NRAS and SRC in Het-1A, and AKT1, KIT and RB1 in both cell types, which could be abolished in the presence of rSLURP-1. Other cancer-related genes whose upregulation by NNK was abolishable by rSLURP-1 were the growth factors EGF in BEP2D cells and HGF in Het-1A cells, and the transcription factors CDKN2A and STAT3 (Het-1A only). NNK also upregulated the anti-apoptotic BCL2 (Het-1A) and downregulated the pro-apoptotic TNF (Het-1A), BAX and CASP8 (BEP2D), all of which could be abolished, in part, by rSLURP-1. NNK decreased expression of the CTNNB1 gene encoding the intercellular adhesion molecule beta-catenin (BEP2D), as well as tumor suppressors CDKN3 and FOXD3 in BEP2D cells and SERPINB5 in Het-1A cells. These pro-oncogenic effects of NNK were abolished by rSLURP-1 that also upregulated RUNX3. SIGNIFICANCE: The obtained results identified target genes for both NNK and SLURP-1 and shed light on the molecular mechanism of their reciprocal effects on tumorigenic transformation of bronchial and oral epithelial cells.
AIMS: Previously we demonstrated that mouse liver mitochondria express functional alpha7 nicotinic acetylcholine receptors (nAChRs). The aim of this study was to investigate whether the nAChRs are found in mitochondria of non-neuronal human cell lines. MAIN METHODS: Three cell lines: U373 (astrocytes), U937 (monocytes) and Daudi (B lymphocytes) were examined by flow cytometry, Cell ELISA and fluorescent confocal microscopy using the antibodies against extracellular epitopes of alpha3, alpha4, alpha7, alpha9, beta2 and beta4 nAChR subunits. KEY FINDINGS: It is shown that the studied cells expressed different sets of nAChR subunits on the plasma membrane suggesting the presence of alpha7 nAChRs on all cells, of alpha3beta4 nAChRs on U373 cells and of alpha4beta2/alpha4beta4 nAChRs on U937 cells. In addition to nAChRs exposed on the surface, all cells contained a considerable intracellular pool of alpha3- and alpha7-containing nAChRs. The binding of alpha3-, alpha7- and beta4-specific antibodies partially overlapped with that of mitochondrial outer membrane translocase-specific antibody. Binding of alpha7-specific antibody also overlapped with that of MitoTracker Green, which binds to active mitochondria. SIGNIFICANCE: The data obtained suggest that a part of intracellular alpha3beta4 and alpha7 nAChRs in U373, U937 and Daudi cells is located on mitochondria. This finding complements our previous observation of alpha7 nAChRs in mouse liver mitochondria and reveals new intracellular targets for cholinergic regulation.
        
Title: Critical roles of acetylcholine and the muscarinic and nicotinic acetylcholine receptors in the regulation of immune function Kawashima K, Fujii T, Moriwaki Y, Misawa H Ref: Life Sciences, 91:1027, 2012 : PubMed
Lymphocytes express both muscarinic and nicotinic acetylcholine (ACh) receptors (mAChRs and nAChRs, respectively), and stimulation of mAChRs and nAChRs produces various biochemical and functional changes. Although it has been postulated that parasympathetic cholinergic nerves directly innervate immune cells, no evidence has supported this hypothesis. We measured ACh in the blood of various animal species and determined its localization in T cells using a sensitive and specific radioimmunoassay. Furthermore, we showed that T cells express choline acetyltransferase (ChAT), an ACh synthesizing enzyme. Immunological T cell activation enhances ACh synthesis through the up-regulation of ChAT expression, suggesting lymphocytic cholinergic activity is related to immunological activity. Most immune cells such as T cells, B cells, and monocytes express all five subtypes of mAChRs (M(1)-M(5)), and various subunits of the nAChR, such as alpha3, alpha5, alpha7, alpha9, and alpha10. Studies on serum antibody production in M(1) and M(5) combined mAChR gene knockout (KO) mice immunized with ovalbumin (OVA) revealed that M(1)/M(5) mAChRs up-regulate TNF-alpha, IFN-gamma and IL-6 production in spleen cells, leading to an elevation of serum anti-OVA specific IgG(1). In contrast, studies of nAChR alpha7 subunit gene KO mice immunized with OVA show that alpha7 nAChRs down-regulate these proinflammatory cytokines, thereby leading to a reduction of anti-OVA specific IgG(1). Taken together, these findings demonstrate that both mAChRs and nAChRs modulate production of cytokines, such as TNF-alpha, resulting in a modification of antibody production. These findings support the notion that a non-neuronal cholinergic system is involved in the regulation of immune cell function.
        
Title: Regulation of airway inflammation and remodeling by muscarinic receptors: perspectives on anticholinergic therapy in asthma and COPD Kistemaker LE, Oenema TA, Meurs H, Gosens R Ref: Life Sciences, 91:1126, 2012 : PubMed
Acetylcholine is the primary parasympathetic neurotransmitter in the airways and an autocrine/paracrine secreted hormone from non-neuronal origins including inflammatory cells and airway structural cells. In addition to the well-known functions of acetylcholine in regulating bronchoconstriction and mucus secretion, it is increasingly evident that acetylcholine regulates inflammatory cell chemotaxis and activation, and also participates in signaling events leading to chronic airway wall remodeling that is associated with chronic obstructive airway diseases including asthma and COPD. As muscarinic receptors appear responsible for most of the pro-inflammatory and remodeling effects of acetylcholine, these findings have significant implications for anticholinergic therapy in asthma and COPD, which is selective for muscarinic receptors. Here, the regulatory role of acetylcholine in inflammation and remodeling in asthma and COPD will be discussed including the perspectives that these findings offer for anticholinergic therapy in these diseases.
AIMS: Increasing collagen synthesis was observed in lung after stimulation of nicotinic and muscarinic acetylcholine receptors (nAChR and mAChR) on fibroblasts. Since collagen synthesis is an important process during fracture healing and bone remodelling, we asked whether cholinergic receptors are involved in bone collagen production. MAIN METHODS: In the present study we analysed 16 week old male knockout mice for nAChRalpha7 (alpha7-KO) and mAChR M3R (M3R-KO) in correlation to their corresponding wild types (WT). Microarchitecture of right femora, vertebrae Th13 and L1 were analysed by 3D Micro-CT, left femora by a three-point bending test and humeri by real-time RT-PCR. KEY FINDINGS: A significant decrease in relative bone volume, trabecular thickness, trabecular number, bone surface density, and a significant increase in trabecular separation and structure model index were measured for the M3R-KO using Micro-CT analysis. Bending stiffness of M3R-KO was significantly reduced in comparison to WT as well as the collagen 1alpha1 and 1alpha2 mRNA expression was down-regulated. No changes were detected for alpha7-KO using Micro-CT, biomechanical testing, and collagen mRNA expression. SIGNIFICANCE: Our results indicate that nAChRalpha7 are not involved in the regulation of bone collagen synthesis whereas M3R exert stimulatory effects on cancellous bone microarchitecture, flexural rigidity, and bone matrix synthesis. Since the M3R-KO exhibit bone structures similar to systemically diseased bone it might be valuable to establish new therapeutic strategies using administration of agonists for the M3R to improve bone qualities.
        
Title: Cholinergic brush cells in the trachea mediate respiratory responses to quorum sensing molecules Krasteva G, Canning BJ, Papadakis T, Kummer W Ref: Life Sciences, 91:992, 2012 : PubMed
AIM: The airway epithelial surface is constantly exposed to inhaled environmental factors and pathogens. Bitter "tasting" bacterial products such as quorum sensing molecules (QSM) can be detected by solitary chemosensory cells of the upper respiratory tract. Recently, we have shown that tracheal brush cells are cholinergic chemosensory cells affecting the respiration upon stimulation with bitter substances. Here, we explore the hypothesis that tracheal brush cells are capable of detection of bacterial products such as QSM resulting in changes in respiration and in induction of local effects, e.g. regulation of mucociliary clearance. MAIN METHODS: Functional analyses of respiration were performed in the trachea using a newly established model for investigation of respiration in spontaneously breathing anesthetized mice upon isolated tracheal stimulation. Influence of N-3-oxododecanoyl-homoserine lactone (3-OxoC(12)-HSL) on cilia-driven particle transport speed (PTS) in the airways was investigated in acutely excised and submerged mouse tracheae. KEY FINDINGS: 3-OxoC(12)-HSL, a Pseudomonas aeruginosa quorum sensing autoinducer, caused a drop in the respiratory rate 2 min after the application at the mucosal surface. The 3-OxoC(12)-HSL-induced effect on respiration was abolished by inhibition of nicotinic receptors with mecamylamine and by removal of the respiratory epithelium. At the same concentration, 3-OxoC(12)-HSL enhanced significantly PTS on the mucosal surface. SIGNIFICANCE: We conclude that cholinergic airway epithelial cells sense bacterial QSM in the airway lining fluid and communicate this to the CNS via ACh release and nicotinic stimulation of sensory neurons. In addition, QSM enhance PTS.
        
Title: Nicotine and pathological angiogenesis Lee J, Cooke JP Ref: Life Sciences, 91:1058, 2012 : PubMed
This paper describes the role of endothelial nicotinic acetylcholine receptors (nAChR) in diseases where pathological angiogenesis plays a role. An extensive review of the literature was performed, focusing on studies that investigated the effect of nicotine upon angiogenesis. Nicotine induces pathological angiogenesis at clinically relevant concentrations (i.e. at tissue and plasma concentrations similar to those of a light to moderate smoker). Nicotine promotes endothelial cell migration, proliferation, survival, tube formation and nitric oxide (NO) production in vitro, mimicking the effect of other angiogenic growth factors. These in vitro findings indicate that there may be an angiogenic component to the pathophysiology of major tobacco related diseases such as carcinoma, atherosclerosis, and age-related macular degeneration. Indeed, nicotine stimulates pathological angiogenesis in pre-clinical models of these disorders. Subsequently, it has been demonstrated that nicotine stimulates nAChRs on the endothelium to induce angiogenic processes, that these nAChRs are largely of the alpha7 homomeric type, and that there are synergistic interactions between the nAChRs and angiogenic growth factor receptors at the phosphoproteomic and genomic levels. These findings are of potential clinical relevance, and provide mechanistic insights into tobacco-related disease. Furthermore, these findings may lead to novel therapies for diseases characterized by insufficient or inappropriate angiogenesis.
        
Title: The influence of cholinergic agents on histamine release from HMC-1 human mast cell line stimulated with IgG, C-reactive protein and compound 48/80 Nazarov PG, Pronina AP Ref: Life Sciences, 91:1053, 2012 : PubMed
AIMS: The aim of this work is to study the role of acetylcholine (ACh) receptors (AChRs) in the regulation of FcgammaR activity in human mast cells (MC) activated by aggregated IgG (aIgG) and CRP. MC, the key regulators at the interface of innate and acquired immunity, have abundant Fc receptors for IgG (FcgammaRII) which indicate the role of their ligands, IgG and C-reactive protein (CRP), in regulating MC activity. Cholinergic control of FcgammaR-dependent MC functions is poorly defined. MAIN METHODS: HMC-1 culture of human MC; cell incubations with cholinergic drugs and FcgammaR ligands such as heat aggregated human IgG or purified human CRP; compound 48/80, a known histamine liberator employing G protein-coupled receptors, was used as a positive control of MC degranulation; assessment of histamine release. KEY FINDINGS: Both nAChR and mAChR antagonists (hexamethonium and methacine, respectively), per se, elevated histamine-releasing activity of the HMC-1 and suppressed the MC responses to most of investigated activators (carbachol, compound 48/80, and to a lesser extent aIgG). Two blockers together should be applied to aIgG-stimulated cells in order to obtain appreciable suppression of histamine release. The FcgammaR-mediated HMC-1 cell response to CRP was the least sensitive to attenuation by ACh signaling. SIGNIFICANCE: The data obtained suggest the involvement of ACh in the functioning of other receptor systems. Our results indicate that AChRs are closely associated with G protein-coupled receptor-induced reactions of MC and optionally with FcgammaR-dependent functions. CONCLUSION: The data presented demonstrate that AChRs and endogenous ACh are involved in regulating mast cell degranulation and histamine release by affecting the functions of receptors to compound 48/80 and, less, FcgammaRs.
AIMS: The etiology of cervical cancer depends primarily on infection with human papillomaviruses, but tobacco smoking is the most important behavioral risk factor for this cancer. Therefore, we have previously confirmed involvement of nicotinic acetylcholine receptors (nAChRs) in cervical cancer biology. In order to comprehensively evaluate the role of cholinergic signaling in cervical cells, we have addressed additional participation of muscarinic acetylcholine receptors (mAChRs). MAIN METHODS: We have studied the expression of mAChRs and cholinergic system components by reverse transcription PCR and Western blots, the motility of cervical cancer cells in cell culture, and the signaling from mAChRs via the ERK1/2 signaling pathway. KEY FINDINGS: The cervical cancer cells HeLa, SiHa and CaSki express four of the five mAChRs, M1, M3, M4, and M5, and the acetylcholine (ACh) synthesizing and degrading enzymes choline acetyltransferase (ChAT), acetylcholinesterase (AChE), and butyrylcholinesterase (BChE), and vesicular ACh transporter (VAChT). mAChR-dependent signaling induces cervical cell motility, which requires ERK1/2 activation, and could be abrogated by mAChR antagonists. SIGNIFICANCE: The epidemiological finding that tobacco smoke raises the prevalence of cervical cancer has led to analysis of the cholinergic signaling in cervical biology and carcinogenesis. Cervical cancer cells express several nAChRs and mAChRs, whose activation leads to changes of cellular properties such as increased motility and proliferation that favor a carcinogenic phenotype. The signaling involves intracellular phosphorylation cascades including ERK1/2.
        
Title: The non-neuronal cholinergic system as novel drug target in the airways Pieper MP Ref: Life Sciences, 91:1113, 2012 : PubMed
The parasympathetic nervous system is a key regulator of the human organism involved in the pathophysiology of various disorders through cholinergic mechanisms. In the lungs, acetylcholine (ACh) released by vagal nerve endings stimulates muscarinic receptors thereby increasing airway smooth muscle tone. Contraction of airway smooth muscle cells leads to increased respiratory resistance and dyspnea. An additional branch of the cholinergic system is the non-neuronal cholinergic system expressed in nearly all cell types present in the airways. Activation of this system may contribute to an increased cholinergic tone in the lungs, inducing pathophysiological processes like inflammation, remodeling, mucus hypersecretion and chronic cough. Selective muscarinic receptor antagonists specifically inhibit acetylcholine at the receptor inducing bronchodilation in patients with obstructive airway diseases. This paper reviews preclinical pharmacological research activities on anticholinergics including experimental models of asthma and chronic obstructive pulmonary disease, COPD. It discloses various options to follow up the non-neuronal cholinergic system as a novel drug target for the treatment of key aspects of obstructive airway diseases, in particular those of a chronic nature.
        
Title: Regulation by physiological cations of acetylcholine transport mediated by human OCTN1 (SLC22A4). Implications in the non-neuronal cholinergic system Pochini L, Scalise M, Galluccio M, Indiveri C Ref: Life Sciences, 91:1013, 2012 : PubMed
AIMS: This study aimed to investigate the influence of physiological ions on the transport of acetylcholine which is catalyzed by the recombinant human Organic Cation Transporter Novel 1 (hOCTN1), thus being involved in the function of the non neuronal cholinergic system. MAIN METHODS: The experimental model of proteoliposomes reconstituted with the hOCTN1 transporter obtained by over-expression in E. coli has been used. Uptake and efflux of [(3)H]acetylcholine in the proteoliposome system have been followed in the presence of different cations, mimicking the cell environment. KEY FINDINGS: Internal K(+) stimulated, while external Na(+) strongly inhibited the uptake of [(3)H]acetylcholine in proteoliposomes. Strong inhibition was exerted also by external K(+) while Mg(2+) or sucrose had no effect. Differently, the efflux of [(3)H]acetylcholine from proteoliposomes was not influenced by external or internal Na(+) and was only marginally stimulated by internal K(+). By dose response analysis of the Na(+) inhibition, an IC(50) of 1.3 mM was derived. The kinetic analysis of the Na(+) effect revealed a competitive type of inhibition on acetylcholine uptake, i.e., Na(+) interacts with the same external binding site of acetylcholine with a Ki of 1.2 mM. SIGNIFICANCE: Acetylcholine transport catalyzed by hOCTN1 revealed an asymmetric regulation by Na(+). Since the orientation of the transporter in the liposomal membrane is the same as in native membranes, and on the basis of sidedness of inhibition, physiological acetylcholine is principally exported by the transporter. This implies a role in autocrine and paracrine effects in non neuronal tissues.
AIMS: The aims of the present study were to investigate the effect of crebanine on memory and cognition impairment in mice and to elucidate the underlying molecular mechanisms. MAIN METHODS: The memory-enhancing effects of crebanine were assessed with a water maze test using scopolamine-induced amnesic mice. The molecular mechanism was explored in silico by docking crebanine against acetylcholine binding proteins (AChBPs) and in vitro with a radioligand competition assay using (+/-)-[(3)H]-epibatidine. The pharmacological behavior was assessed by observing changes to the functional activity of alpha7-nAChRs expressed in Xenopus oocytes and by fluorescent assays on recombinant ligand gated ion channel (LGIC) receptors expressed in mammalian cells. KEY FINDINGS: The administration of crebanine significantly improved the cognitive deficits induced by scopolamine, as measured by the water maze test. The docking results demonstrated that crebanine bound to the active binding site of the AChBP template with a good docking energy. Crebanine significantly inhibited the binding of (+/-)-[(3)H]-epibatidine to AChBPs with K(i) values of 179 nM and 538 nM for Ls and Ac, respectively. Further functional assays performed using two separate protocols indicated that crebanine is an antagonist of the alpha7-nAChR with an IC(50) of 19.1muM. SIGNIFICANCE: The observed actions of crebanine against amnesia and its effect on alpha7-nAChRs will be beneficial for target-based drug design; crebanine or its scaffold can be used as the starting point to develop a drug for Alzheimer's disease. The cognition-enhancing effects of crebanine and the underlying mechanism based on alpha7-nAChRs are consistent with its traditional use. These findings demonstrate the potential utility of crebanine in the development of neurodegenerative therapy.
Muscarinic acetylcholine (ACh) receptors (mAChRs; M(1)-M(5)) regulate the activity of an extraordinarily large number of important physiological processes. We and others previously demonstrated that pancreatic beta-cells are endowed with M(3) mAChRs which are linked to G proteins of the G(q) family. The activation of these receptors by ACh or other muscarinic agonists leads to the augmentation of glucose-induced insulin release via multiple mechanisms. Interestingly, in humans, ACh acting on human beta-cell mAChRs is released from adjacent alpha-cells which express both choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter (vAChT), indicative of the presence of a non-neuronal cholinergic system in human pancreatic islets. In order to shed light on the physiological roles of beta-cell M(3) receptors, we recently generated and analyzed various mutant mouse models. Specifically, we carried out studies with mice which overexpressed M(3) receptors or mutant M(3) receptors in pancreatic beta-cells or which selectively lacked M(3) receptors or M(3)-receptor-associated proteins in pancreatic beta-cells. Our findings indicate that beta-cell M(3) receptors play a key role in maintaining proper insulin release and whole body glucose homeostasis and that strategies aimed at enhancing signaling through beta-cell M(3) receptors may prove useful to improve beta-cell function for the treatment of type 2 diabetes (T2D).
Currently, tobacco smoking causes approximately 5-6 million deaths per year including more than 35% of all cancer deaths. Nicotine, the addictive constituent of tobacco, and its derived carcinogenic nitrosamines, contribute to cancer promotion and progression through the activation of nicotinic acetylcholine receptors (nAChR). Although the role of nicotine in cancerogenesis is still discussed controversially, it has been recently shown that nicotine induces DNA damages, via induction of oxidative stress, in bronchial epithelial cells. Moreover, nicotine is able to induce muscle sarcomas in A/J mice. In this mini-review we highlight the role of nAChR and nicotine in all cancer phases (induction, promotion and progression). Relevant new findings quoted in literature and some new experiments of our laboratory were reported and discussed.
        
Title: Fibrinogen effects on erythrocyte nitric oxide mobilization in presence of acetylcholine Saldanha C, Freitas T, Almeida JP Ref: Life Sciences, 91:1017, 2012 : PubMed
AIMS: The objectives of this study were to evaluate the effects of high fibrinogen concentration on erythrocyte deformability on mobilization of nitric oxide (NO) and of its metabolites in the presence of acetylcholine (ACh) in healthy human blood samples. MAIN METHODS: Levels of NO were evaluated by amperometric method. Nitrite, nitrate and S-nitrosoglutathione (GSNO) were measured using the spectrophotometric Griess reaction. Erythrocyte deformability was determined using the Rheodyn SSD laser diffractometer. KEY FINDINGS: In the presence of high concentrations of fibrinogen and ACh (10 muM) in the blood samples from healthy humans the erythrocyte nitrites, nitrates and GSNO concentrations increased without significant changes in NO efflux. Mobilization of NO in erythrocytes' presence was enhanced in the presence of ACh and high fibrinogen levels. SIGNIFICANCE: These results suggest that during inflammation when both ACh and high levels of fibrinogen are present, NO delivery by erythrocytes might be compromised by their NO scavenging ability that acts as a compensatory mechanism against the overproduced NO by endothelial inducible nitric oxide synthase.
AIMS: As the stimulation of the alpha7-nicotinic acetylcholine receptor (nAChR), which is present in the synovium of patients with rheumatoid arthritis (RA), leads to a decrease in pro-inflammatory cytokines, the alpha7-nAChR is being discussed as a new therapeutic target. On this background we addressed the question whether alpha7-nAChR mRNA was differentially expressed in RA compared to osteoarthritis (OA) synovial samples and whether other components of the non-neuronal cholinergic system were also present and differentially expressed in the synovium of patients with RA in comparison to OA. MAIN METHODS: The expression of nicotinic and muscarinic acetylcholine receptors (mAChRs), choline and acetylcholine transporters, synthesising and degrading enzymes was determined in human samples of synovial tissue from patients with RA and OA using RT-PCR and immunofluorescence labelling. KEY FINDINGS: Compared to OA, patients with RA showed increased expression of nAChR subunit beta4 while a decline in subunits alpha2 and alpha4 as well as in mAChR M1R was observed. For all other nAChR subunits and mAChRs however there was no significant difference between RA and OA patients. With regard to the ACh transporters and enzymes no expressional changes were observed between OA and RA patients, except for the choline acetyltransferase (ChAT) which was only detected in OA but not in RA synovium. SIGNIFICANCE: Our results indicate that besides alpha7-nAChR other components of the non-neuronal cholinergic system are present and differentially expressed in the synovium of RA and OA patients, which makes them interesting alternative targets in the development of new strategies for RA therapy.
        
Title: Release of acetylcholine from murine embryonic stem cells: effect of nicotinic and muscarinic receptors and blockade of organic cation transporter Wessler I, Michel-Schmidt R, Dohle E, Kirkpatrick CJ Ref: Life Sciences, 91:973, 2012 : PubMed
AIMS: The non-neuronal cholinergic system is widely expressed in nature. The present experiments were performed to characterize the non-neuronal cholinergic system in murine embryonic stem cells (CGR8 cell line). MAIN METHODS: CGR8 cells were cultured in gelatinized flasks with Glasgow's buffered minimal essential medium (Gibco, Germany). Acetylcholine was measured by HPLC combined with bioreactor and electrochemical detection. KEY FINDINGS: CGR8 cells contained 1.08+/-0.12 pmol acetylcholine/10(6) cells (n=7) which was reduced to 0.50+/-0.06 pmol/10(6) cells (n=6; p<0.05) in the presence (4h) of 30muM bromoacetylcholine to block choline acetyltransferase. A time-dependent release of acetylcholine into the incubation medium was demonstrated, when cholinesterase activity was blocked by 10 muM physostigmine, with 97+/-13, 180+/-15 and 216+/-14 pmol being released from 65x10(6) cells after incubation periods of 2, 4 and 6h, respectively. The cumulative release corresponds to a fractional release rate of 2%/min. Blockade of nicotine or muscarine receptors did not significantly modulate the release of acetylcholine which was substantially reduced by 300 muM quinine (inhibitor of organic cation transporters). This inhibition showed considerable fading over the incubation period, indicating additional release mechanisms activated upon inhibition of organic cation transporters. SIGNIFICANCE: Murine embryonic stem cells contain and release significant amounts of acetylcholine. The high fractional release rate and the compensation for blocked organic cation transporters indicate that non-neuronal acetylcholine may play a functional role in the homeostasis of murine embryonic stem cells.
        
Title: Subcellular distribution of choline acetyltransferase by immunogold electron microscopy in non-neuronal cells: placenta, airways and murine embryonic stem cells Wessler I, Michel-Schmidt R, Brochhausen C, Kirkpatrick CJ Ref: Life Sciences, 91:977, 2012 : PubMed
AIMS: Acetylcholine is synthesized in more or less all mammalian cells. However, little is known about the subcellular location of acetylcholine synthesis. Therefore, in the present experiments the subcellular location of the synthesizing enzyme choline acetyltransferase (ChAT) was investigated by anti-ChAT immunogold electron microscopy in human placenta and airways as well as in a murine embryonic stem cell line (CGR8 cell line). MAIN METHODS: Human tissue was obtained as so-called surplus tissue (after delivery/surgical removal because of lung tumor); the CGR8 stem cell line was cultured under standard conditions. For human tissue a monoclonal mouse anti-ChAT antibody (ab) was used and for the CGR8 cell line a polyclonal goat anti-ChAT ab. Immunogold electron microscopy was applied to identify the subcellular location of ChAT. KEY FINDINGS: In trophoblast cells (placenta) specific anti-ChAT immunogold deposition was found within the cell membrane, microvilli, and caveolae but also within the cytosol, for example associated with intermediate filaments. In addition, immunogold deposition was identified within mitochondria and the nuclear membrane. In airway epithelial cells anti-ChAT immunogold was found particularly within the apical cell membrane, cilia, submucosa, cytosol and nuclear membrane. Likewise alveolar macrophages showed positive anti-ChAT immunogold within the nucleus, nuclear membrane and granula. Also in the CGR8 cell line positive anti-ChAT immunogold was identified within the cell nucleus and cytosol. SIGNIFICANCE: The present experiments demonstrate a wide subcellular distribution of ChAT with particular preference of the cell membrane in human epithelial cells.
        
Title: Blockade of nicotinic and muscarinic receptors facilitates spontaneous migration of human peripheral granulocytes: failure in cystic fibrosis Wessler I, Neumann S, Razen M, Zepp F, Kirkpatrick CJ Ref: Life Sciences, 91:1119, 2012 : PubMed
AIMS: Circulating leucocytes express muscarinic (m) and nicotinic (n) receptors and synthesize acetylcholine (ACh) regulating various cell functions. Leucocytes from patients with cystic fibrosis contain less ACh; therefore it was tested whether the regulation of cellular functions like migration differed from healthy volunteers. MAIN METHODS: Peripheral blood (10-20 ml) was used, leucocytes were isolated by Ficoll(R) gradient and the commercial MIGRATEST(R) combined with flow cytometric analysis was applied (pore size 3 mum). KEY FINDINGS: In the absence of test substances 4900+/-1800 (n=10) leucocytes migrated within a time period of 2 h. In the presence of tubocurarine (TC, 30 muM) the cell number increased to 7500+/-2700 [n=10] corresponding to an increase of 162+/-20% (mean of individual experiments; p<0.02). Atropine (1 muM) was not effective (120+/-17%, n=7). Simultaneous application of atropine and TC produced a slightly higher effect than TC alone (185+/-23%; n=8); a 10-fold increase of TC and atropine resulted to a somewhat stronger effect (248+/-39%; n=8). When migration time was reduced to 30 min or the chemoattractant fMLP (0.05 muM) present neither atropine nor TC affected migration. Granulocytes isolated from patients with cystic fibrosis did not respond (2h migration) to 30 muM TC (control: 5180+/-1400 cells [n=10]; TC: 5800+/-1400 [n=10]). Also in the presence of atropine (1 muM) and TC (30 muM) a significant effect was not detected (5800+/-1300 [n=10]). SIGNIFICANCE: Auto-paracrine acetylcholine limits the migration of unstimulated peripheral granulocytes. This effect is impaired in cystic fibrosis most likely because of a reduced endogenous cholinergic tone.
AIMS: A non-neuronal cholinergic system has been described in epithelial cells including that of the urinary bladder (urothelium) and the upper gastrointestinal tract (esophagus). Epithelial dysfunction has been implicated in the pathophysiology of persistent pain conditions such as painful bladder syndrome as well as functional heartburn. For example, alterations in the ability to synthesize and release acetylcholine may contribute to changes in epithelial sensory and barrier function associated with a number of functional genitourinary and intestinal disorders. MAIN METHODS: We examined using immunoblot, acetylcholine (ACh)-synthesis and release components in cat esophageal mucosa and whether elements of these components are altered in a naturally occurring model of chronic idiopathic cystitis termed feline interstitial cystitis (FIC). KEY FINDINGS: We identified proteins involved in ACh synthesis and release (high affinity choline transporter, CHT1; ACh synthesizing enzyme choline acetyltransferase ChAT and carnitine acetyltransferase CarAT; vesicular ACh transporter VAChT and the organic cation transporter isoforms 1-3 or OCT-1-3) in cat esophageal mucosa. Significant alterations in CHT, ChAT, VAChT and OCT-1 were detected in the esophageal mucosa from FIC cats. Changes in the vesicular nucleotide transporter (VNUT) and the junctional protein pan-cadherin were also noted. SIGNIFICANCE: Taken together, these findings suggest that changes in the non-neuronal cholinergic system may contribute to alterations in cell-cell contacts and possibly communication with underlying cells that may contribute to changes in sensory function and visceral hyperalgesia in functional esophageal pain.
AIMS: In the oviduct, muscarinic acetylcholine receptors (MR) are linked with motility regulation and nicotinic receptors (nAChR) with ectopic pregnancy. We here aimed to determine the repertoire of cholinergic receptor expression in the murine oviduct and their functional coupling to regulation of intracellular calcium concentration ([Ca(2+)](i)). MAIN METHODS: Cholinergic receptor transcripts were assessed by RT-PCR in oviductal segments (ampulla, isthmus, uterotubar junction) in all cyclic stages and pregnancy, and in laser-microdissected samples of epithelium and smooth muscle, nAChR subunit alpha3 distribution in tissue sections using an appropriate genetic reporter mouse strain. [Ca(2+)](i) responses were monitored in ciliated and non-ciliated oviductal cells isolated from wild-type and MR subtypes 1 and 3 gene deficient mice. KEY FINDINGS: Transcripts for all MR subtypes (M1-M5) are constantly expressed whereas there is some variability in nAChR expression from individual to individual. The qualitative expression pattern is independent from the hormonal status of the animal, except for nAChR alpha7, which is less present during pregnancy. The epithelium expresses M1, M3, nAChR alpha7 (data from laser-assisted microdissection) and nAChR alpha3 (ultrastructural investigation of reporter mice). MR dominate over nAChR in increasing [Ca(2+)](i) with being M3 the major, but not sole subtype driving this effect. The general nAChR inhibitor mecamylamine enhances muscarinic and purinergic responses. SIGNIFICANCE: In conclusion, the murine oviduct is endowed with a multiplicity of muscarinic and nicotinic receptors subtypes that, with respect to regulation of [Ca(2+)](i), are inversely linked to each other. The major, but not sole, cholinergic receptor driving increase in [Ca(2+)](i) is M3.