Cell biology is increasingly dependent on quantitative methods resulting in the need for microscopic labelling technologies that are highly sensitive and specific. Whilst the use of fluorescent proteins has led to major advances, they also suffer from their relatively low brightness and photo-stability, making the detection of very low abundance proteins using fluorescent protein-based methods challenging. Here, we characterize the use of the self-labelling protein tag called HaloTag, in conjunction with an organic fluorescent dye, to label and accurately count endogenous proteins present in very low numbers (<7) in individual Escherichia coli cells. This procedure can be used to detect single molecules in fixed cells with conventional epifluorescence illumination and a standard microscope. We show that the detection efficiency of proteins labelled with the HaloTag is <=80%, which is on par or better than previous techniques. Therefore, this method offers a simple and attractive alternative to current procedures to detect low abundance molecules.
        
Title: A robust and economical pulse-chase protocol to measure the turnover of HaloTag fusion proteins Merrill RA, Song J, Kephart RA, Klomp AJ, Noack CE, Strack S Ref: Journal of Biological Chemistry, 294:16164, 2019 : PubMed
The self-labeling protein HaloTag has been used extensively to determine the localization and turnover of proteins of interest at the single-cell level. To this end, halogen-substituted alkanes attached to diverse fluorophores are commercially available that allow specific, irreversible labeling of HaloTag fusion proteins; however, measurement of protein of interest half-life by pulse-chase of HaloTag ligands is not widely employed because residual unbound ligand continues to label newly synthesized HaloTag fusions even after extensive washing. Excess unlabeled HaloTag ligand can be used as a blocker of undesired labeling, but this is not economical. In this study, we screened several inexpensive, low-molecular-weight haloalkanes as blocking agents in pulse-chase labeling experiments with the cell-permeable tetramethylrhodamine HaloTag ligand. We identified 7-bromoheptanol as a high-affinity, low-toxicity HaloTag-blocking agent that permits protein turnover measurements at both the cell population (by blotting) and single-cell (by imaging) levels. We show that the HaloTag pulse-chase approach is a nontoxic alternative to inhibition of protein synthesis with cycloheximide and extend protein turnover assays to long-lived proteins.
        
Title: Self-labelling enzymes as universal tags for fluorescence microscopy, super-resolution microscopy and electron microscopy Liss V, Barlag B, Nietschke M, Hensel M Ref: Sci Rep, 5:17740, 2015 : PubMed
Research in cell biology demands advanced microscopy techniques such as confocal fluorescence microscopy (FM), super-resolution microscopy (SRM) and transmission electron microscopy (TEM). Correlative light and electron microscopy (CLEM) is an approach to combine data on the dynamics of proteins or protein complexes in living cells with the ultrastructural details in the low nanometre scale. To correlate both data sets, markers functional in FM, SRM and TEM are required. Genetically encoded markers such as fluorescent proteins or self-labelling enzyme tags allow observations in living cells. Various genetically encoded tags are available for FM and SRM, but only few tags are suitable for CLEM. Here, we describe the red fluorescent dye tetramethylrhodamine (TMR) as a multimodal marker for CLEM. TMR is used as fluorochrome coupled to ligands of genetically encoded self-labelling enzyme tags HaloTag, SNAP-tag and CLIP-tag in FM and SRM. We demonstrate that TMR can additionally photooxidize diaminobenzidine (DAB) to an osmiophilic polymer visible on TEM sections, thus being a marker suitable for FM, SRM and TEM. We evaluated various organelle markers with enzymatic tags in mammalian cells labelled with TMR-coupled ligands and demonstrate the use as efficient and versatile DAB photooxidizer for CLEM approaches.
Cell biology is increasingly dependent on quantitative methods resulting in the need for microscopic labelling technologies that are highly sensitive and specific. Whilst the use of fluorescent proteins has led to major advances, they also suffer from their relatively low brightness and photo-stability, making the detection of very low abundance proteins using fluorescent protein-based methods challenging. Here, we characterize the use of the self-labelling protein tag called HaloTag, in conjunction with an organic fluorescent dye, to label and accurately count endogenous proteins present in very low numbers (<7) in individual Escherichia coli cells. This procedure can be used to detect single molecules in fixed cells with conventional epifluorescence illumination and a standard microscope. We show that the detection efficiency of proteins labelled with the HaloTag is <=80%, which is on par or better than previous techniques. Therefore, this method offers a simple and attractive alternative to current procedures to detect low abundance molecules.
        
Title: A robust and economical pulse-chase protocol to measure the turnover of HaloTag fusion proteins Merrill RA, Song J, Kephart RA, Klomp AJ, Noack CE, Strack S Ref: Journal of Biological Chemistry, 294:16164, 2019 : PubMed
The self-labeling protein HaloTag has been used extensively to determine the localization and turnover of proteins of interest at the single-cell level. To this end, halogen-substituted alkanes attached to diverse fluorophores are commercially available that allow specific, irreversible labeling of HaloTag fusion proteins; however, measurement of protein of interest half-life by pulse-chase of HaloTag ligands is not widely employed because residual unbound ligand continues to label newly synthesized HaloTag fusions even after extensive washing. Excess unlabeled HaloTag ligand can be used as a blocker of undesired labeling, but this is not economical. In this study, we screened several inexpensive, low-molecular-weight haloalkanes as blocking agents in pulse-chase labeling experiments with the cell-permeable tetramethylrhodamine HaloTag ligand. We identified 7-bromoheptanol as a high-affinity, low-toxicity HaloTag-blocking agent that permits protein turnover measurements at both the cell population (by blotting) and single-cell (by imaging) levels. We show that the HaloTag pulse-chase approach is a nontoxic alternative to inhibition of protein synthesis with cycloheximide and extend protein turnover assays to long-lived proteins.
        
Title: Self-labelling enzymes as universal tags for fluorescence microscopy, super-resolution microscopy and electron microscopy Liss V, Barlag B, Nietschke M, Hensel M Ref: Sci Rep, 5:17740, 2015 : PubMed
Research in cell biology demands advanced microscopy techniques such as confocal fluorescence microscopy (FM), super-resolution microscopy (SRM) and transmission electron microscopy (TEM). Correlative light and electron microscopy (CLEM) is an approach to combine data on the dynamics of proteins or protein complexes in living cells with the ultrastructural details in the low nanometre scale. To correlate both data sets, markers functional in FM, SRM and TEM are required. Genetically encoded markers such as fluorescent proteins or self-labelling enzyme tags allow observations in living cells. Various genetically encoded tags are available for FM and SRM, but only few tags are suitable for CLEM. Here, we describe the red fluorescent dye tetramethylrhodamine (TMR) as a multimodal marker for CLEM. TMR is used as fluorochrome coupled to ligands of genetically encoded self-labelling enzyme tags HaloTag, SNAP-tag and CLIP-tag in FM and SRM. We demonstrate that TMR can additionally photooxidize diaminobenzidine (DAB) to an osmiophilic polymer visible on TEM sections, thus being a marker suitable for FM, SRM and TEM. We evaluated various organelle markers with enzymatic tags in mammalian cells labelled with TMR-coupled ligands and demonstrate the use as efficient and versatile DAB photooxidizer for CLEM approaches.
        
Title: Photoswitching-free FRAP analysis with a genetically encoded fluorescent tag Morisaki T, McNally JG Ref: PLoS ONE, 9:e107730, 2014 : PubMed
Fluorescence recovery after photobleaching (FRAP) is a widely used imaging technique for measuring protein dynamics in live cells that has provided many important biological insights. Although FRAP presumes that the conversion of a fluorophore from a bright to a dark state is irreversible, GFP as well as other genetically encoded fluorescent proteins now in common use can also exhibit a reversible conversion known as photoswitching. Various studies have shown how photoswitching can cause at least four different artifacts in FRAP, leading to false conclusions about various biological phenomena, including the erroneous identification of anomalous diffusion or the overestimation of the freely diffusible fraction of a cellular protein. Unfortunately, identifying and then correcting these artifacts is difficult. Here we report a new characteristic of an organic fluorophore tetramethylrhodamine bound to the HaloTag protein (TMR-HaloTag), which like GFP can be genetically encoded, but which directly and simply overcomes the artifacts caused by photoswitching in FRAP. We show that TMR exhibits virtually no photoswitching in live cells under typical imaging conditions for FRAP. We also demonstrate that TMR eliminates all of the four reported photoswitching artifacts in FRAP. Finally, we apply this photoswitching-free FRAP with TMR to show that the chromatin decondensation following UV irradiation does not involve loss of nucleosomes from the damaged DNA. In sum, we demonstrate that the TMR Halo label provides a genetically encoded fluorescent tag very well suited for accurate FRAP experiments.
        
Title: Quantitative in vivo fluorescence cross-correlation analyses highlight the importance of competitive effects in the regulation of protein-protein interactions Sadaie W, Harada Y, Matsuda M, Aoki K Ref: Molecular & Cellular Biology, 34:3272, 2014 : PubMed
Computer-assisted simulation is a promising approach for clarifying complicated signaling networks. However, this approach is currently limited by a deficiency of kinetic parameters determined in living cells. To overcome this problem, we applied fluorescence cross-correlation spectrometry (FCCS) to measure dissociation constant (Kd) values of signaling molecule complexes in living cells (in vivo Kd). Among the pairs of fluorescent molecules tested, that of monomerized enhanced green fluorescent protein (mEGFP) and HaloTag-tetramethylrhodamine was most suitable for the measurement of in vivo Kd by FCCS. Using this pair, we determined 22 in vivo Kd values of signaling molecule complexes comprising the epidermal growth factor receptor (EGFR)-Ras-extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase pathway. With these parameters, we developed a kinetic simulation model of the EGFR-Ras-ERK MAP kinase pathway and uncovered a potential role played by stoichiometry in Shc binding to EGFR during the peak activations of Ras, MEK, and ERK. Intriguingly, most of the in vivo Kd values determined in this study were higher than the in vitro Kd values reported previously, suggesting the significance of competitive bindings inside cells. These in vivo Kd values will provide a sound basis for the quantitative understanding of signal transduction.
        
Title: A HaloTag method for assessing the retrograde axonal transport of the p75 neurotrophin receptor and other proteins in compartmented cultures of rat sympathetic neurons Mok SA, Lund K, Lapointe P, Campenot RB Ref: Journal of Neuroscience Methodsods, 214:91, 2013 : PubMed
We have adapted HaloTag(a) (HT) technology for use in compartmented cultures of rat sympathetic neurons in order to provide a technique that can be broadly applied to studies of the retrograde transport of molecules that play roles in neurotrophin signaling. Transfected neurons expressing HT protein alone, HT protein fused to the p75 neurotrophin receptor (p75NTR) or HT protein fused to tubulin alpha-1B were maintained in compartmented cultures in which cell bodies and proximal axons of rat sympathetic neurons reside in proximal compartments and their distal axons extend into distal compartments. HT ligand containing a fluorescent tetramethylrhodamine (TMR) label was applied either in the distal compartments or the proximal compartments, and the transport of labeled proteins was assayed by gel fluorescence imaging and TMR immunoblot. HT protein expressed alone displayed little or no retrograde transport. HT protein fused to either the intracellular C-terminus or the extracellular N-terminus of p75NTR was retrogradely transported. The retrograde transport of p75NTR was augmented when the distal axons were provided with nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) or antibodies to BDNF. The anterograde transport of HT protein fused to the N-terminus of tubulin alpha-1B was also demonstrated. We conclude that retrograde transport of HT fusion proteins provides a powerful and novel approach in studies of axonal transport.
        
Title: Optically detected structural change in the N-terminal region of the voltage-sensor domain Tsutsui H, Jinno Y, Tomita A, Okamura Y Ref: Biophysical Journal, 105:108, 2013 : PubMed
The voltage-sensor domain (VSD) is a functional module that undergoes structural transitions in response to membrane potential changes and regulates its effectors, thereby playing a crucial role in amplifying and decoding membrane electrical signals. Ion-conductive pore and phosphoinositide phosphatase are the downstream effectors of voltage-gated channels and the voltage-sensing phosphatase, respectively. It is known that upon transition, the VSD generally acts on the region C-terminal to S4. However, whether the VSD also induces any structural changes in the N-terminal region of S1 has not been addressed directly. Here, we report the existence of such an N-terminal effect. We used two distinct optical reporters-one based on the Forster resonance energy transfer between a pair of fluorescent proteins, and the other based on fluorophore-labeled HaloTag-and studied the behavior of these reporters placed at the N-terminal end of the monomeric VSD derived from voltage-sensing phosphatase. We found that both of these reporters were affected by the VSD transition, generating voltage-dependent fluorescence readouts. We also observed that whereas the voltage dependencies of the N- and C-terminal effects appear to be tightly coupled, the local structural rearrangements reflect the way in which the VSD is loaded, demonstrating the flexible nature of the VSD.