Tilorone is a orally available small molecule interferon inducer that is used as an antiviral agent. Selective alpha7 nicotinic acetylcholine receptor (alpha7 nAChR) agonist. Inhibits eel and human AChE with IC(50)'s of 14.4 nM and 64.4 nM, respectively, but does not inhibit BuChE IC(50) > 50 microM
Acetylcholinesterase (AChE) is an important drug target in neurological disorders like Alzheimer's disease, Lewy body dementia, and Parkinson's disease dementia as well as for other conditions like myasthenia gravis and anticholinergic poisoning. In this study, we have used a combination of high-throughput screening, machine learning, and docking to identify new inhibitors of this enzyme. Bayesian machine learning models were generated with literature data from ChEMBL for eel and human AChE inhibitors as well as butyrylcholinesterase inhibitors (BuChE) and compared with other machine learning methods. High-throughput screens for the eel AChE inhibitor model identified several molecules including tilorone, an antiviral drug that is well-established outside of the United States, as a newly identified nanomolar AChE inhibitor. We have described how tilorone inhibits both eel and human AChE with IC(50)'s of 14.4 nM and 64.4 nM, respectively, but does not inhibit the closely related BuChE IC(50) > 50 microM. We have docked tilorone into the human AChE crystal structure and shown that this selectivity is likely due to the reliance on a specific interaction with a hydrophobic residue in the peripheral anionic site of AChE that is absent in BuChE. We also conducted a pharmacological safety profile (SafetyScreen44) and kinase selectivity screen (SelectScreen) that showed tilorone (1 microM) only inhibited AChE out of 44 toxicology target proteins evaluated and did not appreciably inhibit any of the 485 kinases tested. This study suggests there may be a potential role for repurposing tilorone or its derivatives in conditions that benefit from AChE inhibition.
The well-known interferon-inducer tilorone was found to possess potent affinity for the agonist site of the alpha7 neuronal nicotinic receptor (K(i)=56 nM). SAR investigations determined that both basic sidechains are essential for potent activity, however active monosubstituted derivatives can also be prepared if the flexible sidechains are replaced with conformationally rigidified cyclic amines. Analogs in which the fluorenone core is replaced with either dibenzothiophene-5,5-dioxide or xanthenone also retain potent activity.
BACKGROUND AND PURPOSE: The alpha7 nicotinic acetylcholine receptor (nAChR) has attracted considerable interest as a target for cognitive enhancement in schizophrenia and Alzheimer's Disease. However, most recently described alpha7 agonists are derived from the quinuclidine structural class. Alternatively, the present study identifies tilorone as a novel alpha7-selective agonist and characterizes analogues developed from this lead. EXPERIMENTAL APPROACH: Activity and selectivity were determined from rat brain alpha7 and alpha4beta2 nAChR binding, recombinant nAChR activation, and native alpha7 nAChR mediated stimulation of ERK1/2 phosphorylation in PC12 cells. KEY RESULTS: Tilorone bound alpha7 nAChR (IC(50) 110 nM) with high selectivity relative to alpha4beta2 (IC(50) 70 000 nM), activated human alpha7 nAChR with an EC(50) value of 2.5 microM and maximal response of 67% relative to acetylcholine, and showed little agonist effect at human alpha3beta4 or alpha4beta2 nAChRs. However, the rat alpha7 nAChR maximal response was only 34%. Lead optimization led to 2-(5-methyl-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl)-xanthen-9-one (A-844606) with improved binding (alpha7 IC(50) 11 nM, alpha4beta2 IC(50)>30 000 nM) and activity at both human and rat alpha7 nAChR (EC(50)s 1.4 and 2.2 microM and apparent efficacies 61 and 63%, respectively). These compounds also activated native alpha7 nAChR, stimulating ERK1/2 phosphorylation in PC12 cells. CONCLUSIONS AND IMPLICATIONS: Tilorone, known as an interferon inducer, is a selective alpha7 nAChR agonist, suggesting utility of the fluorenone pharmacophore for the development of alpha7 nAChR selective agonists. Whether alpha7 stimulation mediates interferon induction, or whether interferon induction may influence the potential anti-inflammatory properties of alpha7 nAChR agonists remains to be elucidated.