Title: Synthesis and 31P chemical shift identification of tripeptide active site models that represent human serum acetylcholinesterase covalently modified at serine by certain organophosphates Thompson CM, Suarez AI, Rodriguez OP Ref: Chemical Research in Toxicology, 9:1325, 1996 : PubMed
Most organophosphorus (OP) insecticides impart their toxic action via inhibition of cholinesterases by reacting at an essential serine hydroxyl group. The inhibition process is dependent upon the reactivity, stereochemistry, leaving group, and the mechanism of phosphorylation and/or reactivation (or aging) inherent to the OP compound under consideration. Because a wide array of phosphorylated structures are possible following inhibition by an OP, a simple model system was sought to investigate the mechanistic details of these and related reactions. In the present study, the tripeptide N-CBZ-Glu-Ser(OH)-Ala-OEt (chosen as a truncated form of human serum cholinesterase) was chemically modified at the serine hydroxyl group by various O-methyl phosphate groups and the 31P NMR chemical shift recorded. Six tripeptides, representing (a) phosphorylation by dimethyl phosphorothionates (N-CBZ-Glu-Ser[O-P(S)(OMe)2]Ala-OEt; 5), (b) phosphorylation by dimethyl phosphates (N-CBZ-Glu-Ser[O-P(O)(OMe)2] Ala-Oet; 6), (c) phosphorylation by O,S-dimethyl phosphorothiolates (N-CBZ-Glu-Ser[O-P(O)(OMe)(SMe)]Ala-OEt; 7), (d) aging following inhibition by dimethyl phosphorothionates (N-CBZ-Glu-Ser[O-P(O)(OMe)(S-)]Ala-OEt; 8), (e) aging following inhibition by dimethyl phosphates (N-CBZ-Glu-Ser[O-P(O)(OMe)(O-)]Ala-OEt; 9), and (f) phosphorylation by R/S)PSc-isomalathion stereoisomers (N-CBZ-Glu-Ser[O-P(O)(OMe)(SCH(CO2CO2Et)CH2-CO2Et)]Ala-OEt; 10) have been synthesized. Tripeptides 5 and 6 were prepared via preliminary formation of an intermediate tripeptide phosphite followed by direct conversion to 5 using S8 or to 6 with m-CPBA, respectively. Tripeptides 8 and 9 were prepared by dealkylation of 5 and 6, respectively. Tripeptides 7 and 10 were prepared by reaction of 8 with dimethyl sulfate and (R)- or (S)-diethyl (trifluoromethanesulfonyl)malate, respectively.
        
Title: Mutagenic and alkylating activities of organophosphate impurities of commercial malathion Imamura T, Talcott RE Ref: Mutat Res, 155:1, 1985 : PubMed
The purpose of this study was to determine if 4 major organophosphate impurities of malathion were active as alkylators of nitrobenzylpyridine (NBP) or as mutagens in the Salmonella typhimurium bioassay. Malathion, isomalathion, O,O,O-trimethyl phosphorothioate, O,O,S-trimethyl phosphorothioate, and O,S,S-trimethyl phosphorodithioate produced alkylated NBP at varying rates. In order of increasing NBP reactivity, the compounds ranked: O,O,O-trimethyl phosphorothioate = O,O,S-trimethyl phosphorothioate less than O,S,S-trimethyl phosphorodithioate less than isomalathion = malathion. At 37 degrees C, the most reactive compounds produced an NBP alkylation rate equal to approximately 25% of the rate produced by methyl methanesulfonate, a potent Salmonella mutagen. However, none of the organophosphates were mutagenic in S. typhimurium TA97, TA98 and TA100 when tested by the standard plate-incorporation method or by the preincubation modification of the plate-incorporation method. The possible relationships between NBP reactivity and the biological activities of these organophosphates are discussed.
        
Title: Toxicological properties of trialkyl phosphorothioate and dialkyl alkyl- and arylphosphonothioate esters Fukuto TR Ref: J Environ Sci Health B, 18:89, 1983 : PubMed
Impurities such as O,S,S-trimethyl phosphorodithioate (TMPD) and the S-methyl isomer of malathion (isomalathion) strongly potentiated the mammalian toxicity of malathion. In contrast, impurities present in the phosphoramidothioate insecticide acephate had an antagonizing effect on its mammalian toxicity. The potentiation of the toxicity of malathion was attributed to inhibition of mammalian liver and serum carboxylesterase. O,O,S-Trimethyl phosphorothioate (TMP), another impurity present in technical malathion and in other organophosphorus insecticides, proved to be highly toxic. Rats given a single oral dose of TMP at a level as low as 20 mg/kg died over a period of three weeks, with death occurring with non-cholinergic signs of poisoning. TMPD also caused similar delayed death in rats. O,O,O-Trimethyl phosphorothioate (TMP=S), also another impurity in technical malathion and a structural isomer of TMP, was a potent antagonist to the delayed toxicity of TMP. Examination of a number of related trialkyl phosphorothioate and dialkyl alkylphosphonothioate esters revealed several of these compounds to be highly toxic to rats.