Prochlorperazine and (trifluoperazine) stimulated the rate of acetylthiocholine (ATCh) hydrolysis by AChE (Katz et al. 2018). Prochlorperazine is a synthetic propylpiperazine derivative of phenothiazine with antiemetic, antipsychotic, antihistaminic, and anticholinergic activities. Prochlorperazine antagonizes the dopamine D2-receptor in the chemoreceptor trigger zone (CTZ) of the brain and may prevent chemotherapy-induced emesis
3 moreTitle: Antiviral activity of chlorpromazine, fluphenazine, perphenazine, prochlorperazine, and thioridazine towards RNA-viruses. A review Otreba M, Kosmider L, Rzepecka-Stojko A Ref: European Journal of Pharmacology, 887:173553, 2020 : PubMed
In 2020 the whole world focused on antivirus drugs towards SARS-CoV-2. Most of the researchers focused on drugs used in other viral infections or malaria. We have not seen such mobilization towards one topic in this century. The whole situation makes clear that progress needs to be made in antiviral drug development. The first step to do it is to characterize the potential antiviral activity of new or already existed drugs on the market. Phenothiazines are antipsychotic agents used previously as antiseptics, anthelminthics, and antimalarials. Up to date, they are tested for a number of other disorders including the broad spectrum of viruses. The goal of this paper was to summarize the current literature on activity toward RNA-viruses of such drugs like chlorpromazine, fluphenazine, perphenazine, prochlorperazine, and thioridazine. We identified 49 papers, where the use of the phenothiazines for 23 viruses from different families were tested. Chlorpromazine, fluphenazine, perphenazine, prochlorperazine, and thioridazine possess anti-viral activity towards different types of viruses. These drugs inhibit clathrin-dependent endocytosis, cell-cell fusion, infection, replication of the virus, decrease viral invasion as well as suppress entry into the host cells. Additionally, since the drugs display activity at nontoxic concentrations they have therapeutic potential for some viruses, still, further research on animal and human subjects are needed in this field to verify cell base research.
Organophosphate compounds (OPCs) are commonly used as pesticides and were developed as nerve agents for chemical warfare. Exposure to OPCs results in toxicity due to their covalent binding and inhibition of acetylcholinesterase (AChE). Treatment for toxicity due to OPC exposure has been largely focused on the reactivation of AChE by oxime-based compounds via direct nucleophilic attack on the phosphorous center. However, due to the disadvantages to existing oxime-based reactivators for treatment of OPC poisoning, we considered non-oxime mechanisms of reactivation. A high throughput screen of compound libraries was performed to discover previously unidentified reactivation compounds, followed by studies on their analogs. In the process, we discovered multiple non-oxime classes of compounds, the most robust of which we have already reported [1]. Herein, we report other classes of compounds we identified in our screen that are efficient at reactivation. During biochemical characterization, we also found some compounds with other activities that may inspire novel therapeutic approaches to OPC toxicity. Specifically, we found compounds that [1] increase the rate of substrate hydrolysis by AChE and, [2] protect the enzyme from inhibition by OPC. Further, we discovered that a subset of reactivator compounds recover activity from both AChE and the related enzyme butyrylcholinesterase (BuChE). We now report these compounds, their activities and discuss how each relates to therapeutic approaches that would provide alternatives to traditional oxime-based reactivation.
The inhibition of horse serum butyrylcholinesterase (EC 3.1.1.8) by 10 phenothiazine or thioxanthene derivatives was studied with a purified enzyme. Most compounds were mixed inhibitors, but for some of them an apparent competitive inhibition was observed. The competitive inhibition constants (K) were in the range 0.05 to 5 microM. The structures of the inhibitors were modeled by geometry optimization with the AM1 semi-empirical molecular orbital method and octanol/water partition coefficients were estimated with the CLOGP software. Quantitative structure-activity relationships identified lipophilicity, molecular volume, and electronic energies as the main determinants of inhibition. This quantitative model suggested hydrophobic and charge-transfer interactions of the phenothiazine ring with a tryptophan residue at the "anionic" site of the enzyme, and a hydrophobic interaction of the lateral chain with nonpolar amino acids.
        
3 lessTitle: Antiviral activity of chlorpromazine, fluphenazine, perphenazine, prochlorperazine, and thioridazine towards RNA-viruses. A review Otreba M, Kosmider L, Rzepecka-Stojko A Ref: European Journal of Pharmacology, 887:173553, 2020 : PubMed
In 2020 the whole world focused on antivirus drugs towards SARS-CoV-2. Most of the researchers focused on drugs used in other viral infections or malaria. We have not seen such mobilization towards one topic in this century. The whole situation makes clear that progress needs to be made in antiviral drug development. The first step to do it is to characterize the potential antiviral activity of new or already existed drugs on the market. Phenothiazines are antipsychotic agents used previously as antiseptics, anthelminthics, and antimalarials. Up to date, they are tested for a number of other disorders including the broad spectrum of viruses. The goal of this paper was to summarize the current literature on activity toward RNA-viruses of such drugs like chlorpromazine, fluphenazine, perphenazine, prochlorperazine, and thioridazine. We identified 49 papers, where the use of the phenothiazines for 23 viruses from different families were tested. Chlorpromazine, fluphenazine, perphenazine, prochlorperazine, and thioridazine possess anti-viral activity towards different types of viruses. These drugs inhibit clathrin-dependent endocytosis, cell-cell fusion, infection, replication of the virus, decrease viral invasion as well as suppress entry into the host cells. Additionally, since the drugs display activity at nontoxic concentrations they have therapeutic potential for some viruses, still, further research on animal and human subjects are needed in this field to verify cell base research.
Antipsychotics are often the first-line treatment for behavioral and psychological symptoms of dementia. However, the potential anticholinergic effects of antipsychotics could counteract the therapeutic effects of cholinesterase inhibitors used to treat dementia. We investigated the inhibitory effects of 26 antipsychotics on [N-Methyl-(3)H]scopolamine specific binding in mouse cerebral cortex. At 10(-5) M, chlorpromazine, levomepromazine, prochlorperazine, timiperone, zotepine, pimozide, blonanserin, olanzapine, quetiapine, and clozapine inhibited [N-Methyl-(3)H]scopolamine binding by > 45%. Furthermore, the pKi values of chlorpromazine, levomepromazine, zotepine, olanzapine, and clozapine overlapped with their clinically achievable blood concentrations. Therefore, the anticholinergic properties of these antipsychotics could attenuate the effects of cholinesterase inhibitors.
Organophosphate compounds (OPCs) are commonly used as pesticides and were developed as nerve agents for chemical warfare. Exposure to OPCs results in toxicity due to their covalent binding and inhibition of acetylcholinesterase (AChE). Treatment for toxicity due to OPC exposure has been largely focused on the reactivation of AChE by oxime-based compounds via direct nucleophilic attack on the phosphorous center. However, due to the disadvantages to existing oxime-based reactivators for treatment of OPC poisoning, we considered non-oxime mechanisms of reactivation. A high throughput screen of compound libraries was performed to discover previously unidentified reactivation compounds, followed by studies on their analogs. In the process, we discovered multiple non-oxime classes of compounds, the most robust of which we have already reported [1]. Herein, we report other classes of compounds we identified in our screen that are efficient at reactivation. During biochemical characterization, we also found some compounds with other activities that may inspire novel therapeutic approaches to OPC toxicity. Specifically, we found compounds that [1] increase the rate of substrate hydrolysis by AChE and, [2] protect the enzyme from inhibition by OPC. Further, we discovered that a subset of reactivator compounds recover activity from both AChE and the related enzyme butyrylcholinesterase (BuChE). We now report these compounds, their activities and discuss how each relates to therapeutic approaches that would provide alternatives to traditional oxime-based reactivation.
        
Title: Effects of diverse psychopharmacological substances on the activity of brain prolyl oligopeptidase Peltonen I, Mannisto PT Ref: Basic Clin Pharmacol Toxicol, 108:46, 2011 : PubMed
Prolyl oligopeptidase (POP) has been connected to learning, memory and mood. Changes in serum or plasma POP activity have been linked to psychiatric disorders. POP has been thought to interfere in these conditions by cleaving neuroactive peptides or via the phosphatidylinositol second messenger system. However, little is known about the possible POP inhibition of commonly used psychoactive drugs. In this study, we measured the effects of various psychotropic drugs, including antidepressants, antipsychotics, mood stabilisers and anxiolytics, on the activity of the rat brain homogenate POP. Of the 38 compounds tested, 18 inhibited POP by at least 20% at 10 microM (buspirone, chlorpromazine, citalopram, clozapine, desipramine, duloxetine, escitalopram, flupenthixol, imipramine, ketanserin, lamotrigine, levomepromazine, prazosin, prochlorperazine, promazine, risperidone ritanserin and thioridazine). Thioridazine and valproate (VPA) acted at therapeutic plasma levels. Kinetically, VPA was a competitive inhibitor, thioridazine a non-competitive inhibitor and ketanserin a mixed type inhibitor. Being lipophilic, many of the psychoactive compounds are present in the brain at several-times higher concentrations than in plasma. At concentrations reported to be reached in the brain, chlorpromazine, clozapine, desipramine, imipramine, prochlorperazine and promazine inhibited POP by 30-50% suggesting that they could inhibit POP in vivo. However, when studied ex vivo, a single dose of 10 mg/kg thioridazine caused a deep sedation in the mice but did not inhibit the activity of POP. In conclusion, compared with conventional POP inhibitors, all psychopharmacological compounds tested are very weak inhibitors in vitro, and we doubt that their POP inhibition would be therapeutically meaningful.
        
Title: In vitro human plasma leucine(5)-enkephalin degradation is inhibited by a select number of drugs with the phenothiazine molecule in their chemical structure Mosnaim AD, Puente J, Saavedra R, Diamond S, Wolf ME Ref: Pharmacology, 67:6, 2003 : PubMed
A number of drugs with the phenothiazine molecule in their chemical structure inhibit in a dose-dependent manner human plasmatic aminopeptidase leucine(5)-enkephalin (LEU) metabolism. Half-life peptide degradation was significantly increased by thioridazine > fluphenazine > As-1397 [10-(alpha-diethylaminopropionyl)phenothiazine] >/= promethazine >/= chlorpromazine (final drug conc. 10(-4) M); t1/2 (+/- SD) 21.2 +/- 1.1, 19.6 +/- 1.0, 17.2 +/- 0.9, 17.1 +/- 1.0, and 17.1 +/- 1.1 min, respectively. Control and bacitracin (known aminopeptidase inhibitor) values were 11.8 +/- 1.0 and 31.3 +/- 1.7 min, respectively. These drugs significantly decreased (listed in the same order) LEU degradation initial velocity; Iv (+/- SD) 0.77 +/- 0.2, 0.82 +/- 0.2, 0.92 +/- 0.3, 0.93 +/- 0.2, 0.94 +/- 0.3 pg LEU/min, respectively. Control and bacitracin 1.10 +/- 0.3 and 0.20 +/- 0.1 pg LEU/min, respectively. Values represent results from 5 samples, each obtained by pooling 6 individual plasmas (4 male and 2 female; n = 30 healthy, drug-free volunteers). However, neither the phenothiazines ethopropazine, methotrimeprazine, prochlorperazine and trifluoperazine nor the various commonly used heterocyclic antipsychotics tested, e.g., molindone, loxapine, clozapine, haloperidol, sulpiride and thiothixene inhibited plasma LEU degradation kinetics. Our results failed to show correlations between chemical structure, antipsychotic properties and ability to inhibit plasmatic aminopeptidase LEU degradation. Whereas, presence of the phenothiazine molecule appears to be necessary for enzyme inhibition, only five out of nine substituted phenothiazines tested exhibited this effect. Furthermore, there was a lack of correlation between phenothiazines antipsychotic properties and their capacity to inhibit aminopeptidase activity, a property shown by promethazine (antihistaminic) and As-1397 (selective butyrylcholinesterase inhibitor) but lacking in prochlorperazine and trifluoperazine. Our results provide information which could lead to the rational design of agents capable to modulate the bioavailability of enkephalin and other endogenous aminopeptidase-degraded peptides believed to be involved in the etiology and/or pathophysiology associated with various disease conditions. Whether their development could find useful pharmacological applications remains to be explored.
The inhibition of horse serum butyrylcholinesterase (EC 3.1.1.8) by 10 phenothiazine or thioxanthene derivatives was studied with a purified enzyme. Most compounds were mixed inhibitors, but for some of them an apparent competitive inhibition was observed. The competitive inhibition constants (K) were in the range 0.05 to 5 microM. The structures of the inhibitors were modeled by geometry optimization with the AM1 semi-empirical molecular orbital method and octanol/water partition coefficients were estimated with the CLOGP software. Quantitative structure-activity relationships identified lipophilicity, molecular volume, and electronic energies as the main determinants of inhibition. This quantitative model suggested hydrophobic and charge-transfer interactions of the phenothiazine ring with a tryptophan residue at the "anionic" site of the enzyme, and a hydrophobic interaction of the lateral chain with nonpolar amino acids.