AChE PAS inhibitor (phenylphenanthridinium) equipped with an acatylene group at the end of a flexible methylene chain used as building block of 1,3-dipolar cycloaddition (click chemistry) with an active site inhibitor (tacrine) equipped with an azide group at the end of a methylene chain
The 1,3-dipolar cycloaddition reaction between unactivated azides and acetylenes proceeds exceedingly slowly at room temperature. However, considerable rate acceleration is observed when this reaction occurs inside the active center gorge of acetylcholinesterase (AChE) between certain azide and acetylene reactants, attached via methylene chains to specific inhibitor moieties selective for the active center and peripheral site of the enzyme. AChE catalyzes the formation of its own inhibitor in a highly selective fashion: only a single syn1-triazole regioisomer with defined substitution positions and linker distances is generated from a series of reagent combinations. Inhibition measurements revealed this syn1-triazole isomer to be the highest affinity reversible organic inhibitor of AChE with association rate constants near the diffusion limit. The corresponding anti1 isomer, not formed by the enzyme, proved to be a respectable but weaker inhibitor. The crystal structures of the syn1- and anti1-mouse AChE complexes at 2.45- to 2.65-A resolution reveal not only substantial binding contributions from the triazole moieties, but also that binding of the syn1 isomer induces large and unprecedented enzyme conformational changes not observed in the anti1 complex nor predicted from structures of the apoenzyme and complexes with the precursor reactants. Hence, the freeze-frame reaction offers both a strategically original approach for drug discovery and a means for kinetically controlled capture, as a high-affinity complex between the enzyme and its self-created inhibitor, of a highly reactive minor abundance conformer of a fluctuating protein template.
The cover picture shows the electric eel, Electrophorus electricus, a source for commercially available acetylcholinesterase. In an experiment described by K. B. Sharpless and M. G. Finn and co-workers on pp. 1053+/-1057, a femtomolar inhibitor was assembled by the enzyme from a collection of building blocks containing azide and alkyne functional groups, shown floating in solution. The templated 1,3-dipolar cycloaddition reaction, producing the inhibitor, is represented by the flare of light at the center of the image.