Building block of cholinesterases multitarget inhibitors (p-tolylsulfonamide moiety binds to the Peripheral Anionic Site) and fluorescent substrate for carboxylesterase (the PTSA targeting the endoplasmic reticulum). Also product of hydrolysis of by polyurethane hydrolysing enzymes
New hybrid compounds of 4-amino-2,3-polymethylene-quinoline containing different sizes of the aliphatic ring and linked to p-tolylsulfonamide with alkylene spacers of increasing length were synthesized as potential drugs for treatment of Alzheimer's disease (AD). All compounds were potent inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity toward BChE. The lead compound 4-methyl-N-(5-(1,2,3,4-tetrahydro-acridin-9-ylamino)-pentyl)-benzenesulfonamide (7h) exhibited an IC(50) (AChE) = 0.131 +/- 0.01 muM (five times more potent than tacrine), IC(50)(BChE) = 0.0680 +/- 0.0014 muM, and 17.5 +/- 1.5% propidium displacement at 20 muM. The compounds possessed low activity against carboxylesterase, indicating a likely absence of unwanted drug-drug interactions in clinical use. Kinetics studies were consistent with mixed-type reversible inhibition of both cholinesterases. Molecular docking demonstrated dual binding sites of the conjugates in AChE and clarified the differences in the structure-activity relationships for AChE and BChE inhibition. The conjugates could bind to the AChE peripheral anionic site and displace propidium, indicating their potential to block AChE-induced beta-amyloid aggregation, thereby exerting a disease-modifying effect. All compounds demonstrated low antioxidant activity. Computational ADMET profiles predicted that all compounds would have good intestinal absorption, medium blood-brain barrier permeability, and medium cardiac toxicity risk. Overall, the results indicate that the novel conjugates show promise for further development and optimization as multitarget anti-AD agents.
        
Title: Endoplasmic Reticulum Targeting Ratiometric Fluorescent Probe for Carboxylesterase 2 Detection in Drug-Induced Acute Liver Injury Tian X, Yan F, Zheng J, Cui X, Feng L, Li S, Jin L, James TD, Ma X Ref: Analytical Chemistry, 91:15840, 2019 : PubMed
Carboxylesterase 2 (CES2), an endoplasmic reticulum (ER) located phase I enzyme, plays a vital role in the metabolism of various endogenous and exogenous substances, and is regarded as an important target for the design of prodrugs. Unfortunately, superior highly selective ER targeting fluorescent probes for monitoring of CES2 are not currently available. Herein, we report an ER targeting CES2 selective and sensitive ratiometric fluorescent probe ERNB based on the ER localizing group p-toluenesulfonamide. ERNB possessed high specificity, sensitivity, and exhibited excellent subcellular localization when compared to commercial ER tracker, and was used to image CES2 in the ER of living cells. Additionally, using ERNB we evaluated the CES2 regulation under d,l-dithiothreitol and tunicamycin-induced ER stress. Furthermore, we determined the down regulation of CES2 activity and expression in the acetaminophen-induced acute liver injury model. On the basis of these results, we conclude that ERNB is a promising tool for highlighting the role of CES2 in the ER and in exploring the role of CES2 in the development of diseases associated with ER stress.
Using the acylation reaction with tosyl chloride of N-aminopropyl analogues of tacrine and its cyclic homologues with different size of the aliphatic cycle (5-8), we synthesized a number of new derivatives of p-toluenesulfonamide. It is shown that the synthesized hybrid compounds of tacrine and p-toluenesulfonamide are effective inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with the preferential inhibition of BChE. They also displace propidium from the peripheral anionic site of the electric eel AChE (Electrophorus electricus). The characteristics of the efficiency and selectivity of cholinesterase inhibition by the test compounds were confirmed by the results of molecular docking.
        
2 lessTitle: A fast fluorescent probe for tracing endoplasmic reticulum-located carboxylesterase in living cells Dai X, Yu F, Jiang Z, Dong B, Kong X Ref: Luminescence, :, 2022 : PubMed
Carboxylesterase (CEs), mainly localized in endoplasmic reticulum (ER), are responsible for hydrolyzing compounds containing various ester bonds. They have closely associated with drug metabolism and cellular homeostasis. Although some CE fluorescent probes have been developed, there are still a lack of probes that could target to ER. Here, we developed a novel fluorescent probe CR with specific ER anchor for monitoring CEs. In CR, p-toluenesulfonamide was chosen as precise ER targeting. Simple acetyl moiety was employed as CE response site and fluorescent modulation unit. During the spectral tests, CR displayed fast response speed (within 10s) towards CEs. Besides, it showed high sensitivity (LOD=5.1x10(-3) U/mL) and high selectivity with CEs. In biological imaging, probe CR could specially locate into ER in HepG2 cells. After cells treated with orilistat, CR has achieved in monitoring the changes of CEs. Importantly, CR also has ability of tracing the fluctuations of CEs in tunicamycin induced an ER stress model. Therefore, probe CR could be a powerful molecular tool for further investigating the functions of CEs in ER.
New hybrid compounds of 4-amino-2,3-polymethylene-quinoline containing different sizes of the aliphatic ring and linked to p-tolylsulfonamide with alkylene spacers of increasing length were synthesized as potential drugs for treatment of Alzheimer's disease (AD). All compounds were potent inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity toward BChE. The lead compound 4-methyl-N-(5-(1,2,3,4-tetrahydro-acridin-9-ylamino)-pentyl)-benzenesulfonamide (7h) exhibited an IC(50) (AChE) = 0.131 +/- 0.01 muM (five times more potent than tacrine), IC(50)(BChE) = 0.0680 +/- 0.0014 muM, and 17.5 +/- 1.5% propidium displacement at 20 muM. The compounds possessed low activity against carboxylesterase, indicating a likely absence of unwanted drug-drug interactions in clinical use. Kinetics studies were consistent with mixed-type reversible inhibition of both cholinesterases. Molecular docking demonstrated dual binding sites of the conjugates in AChE and clarified the differences in the structure-activity relationships for AChE and BChE inhibition. The conjugates could bind to the AChE peripheral anionic site and displace propidium, indicating their potential to block AChE-induced beta-amyloid aggregation, thereby exerting a disease-modifying effect. All compounds demonstrated low antioxidant activity. Computational ADMET profiles predicted that all compounds would have good intestinal absorption, medium blood-brain barrier permeability, and medium cardiac toxicity risk. Overall, the results indicate that the novel conjugates show promise for further development and optimization as multitarget anti-AD agents.
Biological recycling of polyurethanes (PU) is a huge challenge to take up in order to reduce a large part of the environmental pollution from these materials. However, enzymatic depolymerization of PU still needs to be improved to propose valuable and green solutions. The present study aims to identify efficient PU degrading enzymes among a collection of 50 hydrolases. Screenings based on model molecules were performed leading to the selection of an efficient amidase (E4143) able to hydrolyze the urethane bond of a low molar mass molecule and an esterase (E3576) able to hydrolyze a waterborne polyester polyurethane dispersion. Degradation activities of the amidase, the esterase and a mix of these enzymes were then evaluated on four thermoplastic polyurethanes (TPU) specifically designed for this assay. The highest degradation was obtained on a polycaprolactone polyol-based polyurethane with weight loss of 33% after 51 days measured for the esterase. Deep cracks on the polymer surface observed by scanning electron microscopy and the presence of oligomers on the remaining TPU detected by size exclusion chromatography evidenced the polymer degradation. Mixing both enzymes led to an increased amount of urethane bonds hydrolysis of the polymer. 6-hydroxycaproic acid and 4,4'-methylene dianiline were recovered after depolymerization as hydrolysis products. Such building blocks could get a second life with the synthesis of new macromolecular architectures.
        
Title: Endoplasmic Reticulum Targeting Ratiometric Fluorescent Probe for Carboxylesterase 2 Detection in Drug-Induced Acute Liver Injury Tian X, Yan F, Zheng J, Cui X, Feng L, Li S, Jin L, James TD, Ma X Ref: Analytical Chemistry, 91:15840, 2019 : PubMed
Carboxylesterase 2 (CES2), an endoplasmic reticulum (ER) located phase I enzyme, plays a vital role in the metabolism of various endogenous and exogenous substances, and is regarded as an important target for the design of prodrugs. Unfortunately, superior highly selective ER targeting fluorescent probes for monitoring of CES2 are not currently available. Herein, we report an ER targeting CES2 selective and sensitive ratiometric fluorescent probe ERNB based on the ER localizing group p-toluenesulfonamide. ERNB possessed high specificity, sensitivity, and exhibited excellent subcellular localization when compared to commercial ER tracker, and was used to image CES2 in the ER of living cells. Additionally, using ERNB we evaluated the CES2 regulation under d,l-dithiothreitol and tunicamycin-induced ER stress. Furthermore, we determined the down regulation of CES2 activity and expression in the acetaminophen-induced acute liver injury model. On the basis of these results, we conclude that ERNB is a promising tool for highlighting the role of CES2 in the ER and in exploring the role of CES2 in the development of diseases associated with ER stress.
Using the acylation reaction with tosyl chloride of N-aminopropyl analogues of tacrine and its cyclic homologues with different size of the aliphatic cycle (5-8), we synthesized a number of new derivatives of p-toluenesulfonamide. It is shown that the synthesized hybrid compounds of tacrine and p-toluenesulfonamide are effective inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with the preferential inhibition of BChE. They also displace propidium from the peripheral anionic site of the electric eel AChE (Electrophorus electricus). The characteristics of the efficiency and selectivity of cholinesterase inhibition by the test compounds were confirmed by the results of molecular docking.