Title: Central and peripheral activity of cholinesterase inhibitors as revealed by yawning and fasciculation in rats Ogura H, Kosasa T, Kuriya Y, Yamanishi Y Ref: European Journal of Pharmacology, 415:157, 2001 : PubMed
This study was designed to investigate the central and peripheral activity profile of cholinesterase inhibitors in rats. Intravenous injection of cholinesterase inhibitors caused fasciculation, a fine involuntary muscular movement. This peripheral cholinergic sign was tightly correlated with in vitro anti-acetylcholinesterase activity by cholinesterase inhibitors, suggesting that fasciculation is a valid index of peripheral cholinergic activation. Yawning, used as a marker of central cholinergic activation, was also monitored. E2030 (3-(2-(1-(1,3-dioxolan-2-ylmethyl)-4-piperidyl)ethyl)-2H-3,4-dihydro-1,3-benzoxazin-2,4-dione hydrochloride) elicited yawning at more than 4 mg/kg, while fasciculation was significantly intensified only at a dose of 16 mg/kg. Donepezil and tacrine induced both yawning and fasciculation at doses greater than 4 mg/kg, whereas physostigmine induced both behaviors at a dose of 8 mg/kg and above. Finally, ipidacrine elicited yawning at a dose of 16 mg/kg and fasciculation at doses greater than 8 mg/kg. Thus, all putative centrally acting cholinesterase inhibitors elicited yawning. TAK-147 (3-[1-(phenylmethyl)-4-piperidinyl]-1-(2,3,4,5-tetrahydro-1H-benzazepin-8-yl)-1-propanone fumarate) did not significantly elicit yawning at doses under 16 mg/kg, but elicited fasciculation at a dose of more than 4 mg/kg. Distigmine, a peripherally acting cholinesterase inhibitor, evoked fasciculations, but not yawning. When mild to moderate fasciculation was evoked, donepezil and E2030 elicited more than nine yawns over 30 min, while the other cholinesterase inhibitors elicited approximately five yawns at most during this period. These results indicated that E2030 and donepezil exhibited the most marked preferential central cholinergic activity, relative to peripheral activity, among cholinesterase inhibitors tested. Scopolamine, a centrally acting antimuscarinic drug, completely inhibited E2030-induced yawning, while peripherally acting methylscopolamine did not. Haloperidol, a dopamine receptor antagonist, partially blocked E2030-induced yawning, but did not block donepezil-induced yawning. These results suggest that central cholinergic and, in part, dopaminergic mechanisms are involved in E2030-induced yawning.
1-[(3-Fluoro-4-pyridinyl)amino]-3-methyl-1(H)-indol-5-yl methyl carbamate (P10358) is a potent, reversible acetylcholinesterase inhibitor that produces central cholinergic stimulation after oral and parental administration in rats and mice. P10358 is a 2.5 times more potent acetylcholinesterase inhibitor than THA in vitro (IC50 = 0.10 +/- 0.02 microM vs. IC50 = 0.25 +/- 0.03 microM). It also inhibits butyrylcholinesterase activity as potently as THA (IC50 = 0.08 +/- 0.05 microM vs. IC50 = 0.07 +/- 0.01 microM). Ex vivo, P10358 (0.2 - 20 mg/kg, p.o.) produced dose-dependent inhibition of brain acetylcholinesterase activity. At 10 and 20 mg/ kg, it produced profound and long-lasting hypothermia in mice. P10358 enhanced performance in rats in a step-down passive avoidance task (0.62 and 1.25 mg/kg) and in a social recognition paradigm (0.32, 0.64 and 1.25 mg/kg) in mice. It reversed scopolamine-induced deficits in the Morris Water maze in rats (1.25 and 2.5 mg/kg) and a higher dose elevated striatal homovanillic acid levels. These behavioral and biochemical effects are consistent with central cholinergic stimulation. Hemodynamic studies in the rat demonstrated a 16-fold separation between behaviorally active doses (1.25 mg/kg) and those that elevated arterial pressure (20 mg/kg). Lethality in rats occurred at an oral dose of 80 mg/kg, but not at lower doses. Chemically, P10358 is an N-aminoindole and may not have the hepatotoxic liability associated with aminoacridine structure of tacrine. P10358 had weak affinity (>10 microM) at a variety of aminergic and peptidergic receptors and uptake carriers. These properties suggest that P10358 may be a safe and promising symptomatic treatment for Alzheimer's disease.