Nijmegen-1 ligand of proteins in family: RsbQ-like
References:
Search PubMed for references concerning: Nijmegen-1
5 moreTitle: Structure and activity of strigolactones: new plant hormones with a rich future Zwanenburg B, Pospisil T Ref: Mol Plant, 6:38, 2013 : PubMed
Strigolactones (SLs) constitute a new class of plant hormones which are active as germination stimulants for seeds of parasitic weeds of Striga, Orobanche, and Pelipanchi spp, in hyphal branching of arbuscular mycorrhizal (AM) fungi and as inhibitors of shoot branching. In this review, the focus is on molecular features of these SLs. The occurrence of SLs in root exudates of host plants is described. The naming protocol for SL according to the International Union of Pure and Applied Chemistry (IUPAC) rules and the 'at a glance' method is explained. The total synthesis of some natural SLs is described with details for all eight stereoisomers of strigol. The problems encountered with assigning the correct structure of natural SLs are analyzed for orobanchol, alectrol, and solanacol. The structure-activity relationship of SLs as germination stimulants leads to the identification of the bioactiphore of SLs. Together with a tentative mechanism for the mode of action, a model has been derived that can be used to design and prepare active SL analogs. This working model has been used for the preparation of a series of new SL analogs such as Nijmegen-1, and analogs derived from simple ketones, keto enols, and saccharine. The serendipitous finding of SL mimics which are derived from the D-ring in SLs (appropriately substituted butenolides) is reported. For SL mimics, a mode of action is proposed as well. Recent new results support this proposal. The stability of SLs and SL analogs towards hydrolysis is described and some details of the mechanism of hydrolysis are discussed as well. The attempted isolation of the protein receptor for germination and the current status concerning the biosynthesis of natural SLs are briefly discussed. Some non-SLs as germinating agents are mentioned. The structure-activity relationship for SLs in hyphal branching of AM fungi and in repression of shoot branching is also analyzed. For each of the principle functions, a working model for the design of new active SL analogs is described and its applicability and implications are discussed. It is shown that the three principal functions use a distinct perception system. The importance of stereochemistry for bioactivity has been described for the various functions.
Parasitic weeds of the genera Striga and Orobanche are considered the most damaging agricultural agents in the developing world. An essential step in parasitic seed germination is sensing a group of structurally related compounds called strigolactones that are released by host plants. Although this makes strigolactone synthesis and action a major target of biotechnology, little fundamental information is known about this hormone. Chemical genetic screening using Arabidopsis thaliana as a platform identified a collection of related small molecules, cotylimides, which perturb strigolactone accumulation. Suppressor screens against select cotylimides identified light-signaling genes as positive regulators of strigolactone levels. Molecular analysis showed strigolactones regulate the nuclear localization of the COP1 ubiquitin ligase, which in part determines the levels of light regulators such as HY5. This information not only uncovers new functions for strigolactones but was also used to identify rice cultivars with reduced capacity to germinate parasitic seed.
        
Title: SAR studies of sesquiterpene lactones as Orobanche cumana seed germination stimulants Galindo JC, de Luque AP, Jorrin J, Macias FA Ref: Journal of Agricultural and Food Chemistry, 50:1911, 2002 : PubMed
Studies of the structure-activity relationship (SAR) directed to evaluate the effect of several sesquiterpene lactones (SL) as germination stimulants of three Orobanche spp. (O. cumana, O. crenata, and O. ramosa) have been achieved. Results are compared with those obtained in the same bioassay with an internal standard, the synthetic analogue of strigol GR-24. A high specificity in the germination activity of SL on the sunflower parasite O. cumana has been observed, and a relationship between such activity and the high sunflower SL content is postulated. Molecular properties of the natural and synthetic germination stimulants (GR-24, GR-7, and Nijmegen-1) and SL have been studied using MMX and PM3 calculations. Consequently, comparative studies among all of them and their activities have been made. SL tested present similarities in molecular properties such as the volume of the molecule and the spatial disposition of the carbon backbone to the natural germination stimulant orobanchol. These properties could be related to their biological activity.
The obligate hemiparasite Striga hermonthica is one of the major global biotic threats to agriculture in sub-Saharan Africa, causing severe yield losses of cereals. The germination of Striga seeds relies on host-released signaling molecules, mainly strigolactones (SLs). This dependency opens up the possibility of deploying SL analogs as "suicidal germination agents" to reduce the accumulated seed bank of Striga in infested soils. Although several synthetic SL analogs have been developed for this purpose, the utility of these compounds in realizing the suicidal germination strategy for combating Striga is still largely unknown. Here, we evaluated the efficacy of three potent SL analogs (MP3, MP16, and Nijmegen-1) under laboratory, greenhouse, and farmer's field conditions. All investigated analogs showed around a 50% Striga germination rate, equivalent to a 50% reduction in infestation, which was comparable to the standard SL analog GR24. Importantly, MP16 had the maximum reduction of Striga emergence (97%) in the greenhouse experiment, while Nijmegen-1 appeared to be a promising candidate under field conditions, with a 43% and 60% reduction of Striga emergence in pearl millet and sorghum fields, respectively. These findings confirm that the selected SL analogs appear to make promising candidates as simple suicidal agents both under laboratory and real African field conditions, which may support us to improve suicidal germination technology to deplete the Striga seed bank in African agriculture.
        
Title: Strigolactone Analogues with a D-Ring Modified at C-2 Mwakaboko AS, Zwanenburg B Ref: European J Org Chem, 2016:3495, 2016 : PubMed
Strigolactones (SLs) are important new plant hormones that receive much attention in current plant science. SLs are produced by many plants and are exuded by the root system. SLs are, amongst others, germination stimulants for seed of parasitic weeds. Naturally occurring SLs invariably contain three annelated rings, the ABC-scaffold, connected to a butenolide (the D-ring) via an enol ether unit. The synthesis of natural SLs requires many steps, therefore there is a continuous search for SL analogues with a simpler structure but with retention of bioactivity. In this study modified D-ring variants are investigated, especially analogues having a methyl group at C-2 instead of a hydrogen. For these analogues the ABC-scaffolds of GR24 and Nijmegen-1 were used. The coupling reaction proceeds profoundly better with chlorobutenolides than with the corresponding bromides. Bioassays reveal that the introduction an extra methyl at C-2 does not influence the germination activity, which is relevant for gaining insight in the mode of action of SLs.
Parasitic weeds of the genera Striga and Orobanche spp. cause severe yield losses in agriculture, especially in developing countries and the Mediterranean. Seeds of these weeds germinate by a chemical signal exuded by the roots of host plants. The radicle thus produced attaches to the root of the host plant, which can then supply nutrients to the parasite. There is an urgent need to control these weeds to ensure better agricultural production. The naturally occurring chemical signals are strigolactones (SLs), e.g. strigol and orobanchol. One option to control these weeds involves the use of SLs as suicidal germination agents, where germination takes place in the absence of a host. Owing to the lack of nutrients, the germinated seeds will die. The structure of natural SLs is too complex to allow multigram synthesis. Therefore, SL analogues are developed for this purpose. Examples are GR24 and Nijmegen-1. In this paper, the SL analogues Nijmegen-1 and Nijmegen-1 Me were applied in the field as suicidal germination agents. Both SL analogues were formulated using an appropriate EC-approved emulsifier (polyoxyethylene sorbitol hexaoleate) and applied to tobacco (Nicotiana tabacum L.) fields infested by Orobanche ramosa L. (hemp broomrape), following a strict protocol. Four out of 12 trials showed a reduction in broomrape of <=95%, two trials were negative, two showed a moderate result, one was unclear and in three cases there was no Orobanche problem in the year of the trials. The trial plots were ca 2000 m(2) ; half of that area was treated with stimulant emulsion, the other half was not treated. The optimal amount of stimulant was 6.25 g ha(-1) . A preconditioning prior to the treatment was a prerequisite for a successful trial. In conclusion, the suicidal germination approach to reducing O. ramosa in tobacco fields using formulated SL analogues was successful. Two other options for weed control are discussed: deactivation of stimulants prior to action and biocontrol by Fusarium oxysporum. 2016 Society of Chemical Industry.
        
Title: Structure and activity of strigolactones: new plant hormones with a rich future Zwanenburg B, Pospisil T Ref: Mol Plant, 6:38, 2013 : PubMed
Strigolactones (SLs) constitute a new class of plant hormones which are active as germination stimulants for seeds of parasitic weeds of Striga, Orobanche, and Pelipanchi spp, in hyphal branching of arbuscular mycorrhizal (AM) fungi and as inhibitors of shoot branching. In this review, the focus is on molecular features of these SLs. The occurrence of SLs in root exudates of host plants is described. The naming protocol for SL according to the International Union of Pure and Applied Chemistry (IUPAC) rules and the 'at a glance' method is explained. The total synthesis of some natural SLs is described with details for all eight stereoisomers of strigol. The problems encountered with assigning the correct structure of natural SLs are analyzed for orobanchol, alectrol, and solanacol. The structure-activity relationship of SLs as germination stimulants leads to the identification of the bioactiphore of SLs. Together with a tentative mechanism for the mode of action, a model has been derived that can be used to design and prepare active SL analogs. This working model has been used for the preparation of a series of new SL analogs such as Nijmegen-1, and analogs derived from simple ketones, keto enols, and saccharine. The serendipitous finding of SL mimics which are derived from the D-ring in SLs (appropriately substituted butenolides) is reported. For SL mimics, a mode of action is proposed as well. Recent new results support this proposal. The stability of SLs and SL analogs towards hydrolysis is described and some details of the mechanism of hydrolysis are discussed as well. The attempted isolation of the protein receptor for germination and the current status concerning the biosynthesis of natural SLs are briefly discussed. Some non-SLs as germinating agents are mentioned. The structure-activity relationship for SLs in hyphal branching of AM fungi and in repression of shoot branching is also analyzed. For each of the principle functions, a working model for the design of new active SL analogs is described and its applicability and implications are discussed. It is shown that the three principal functions use a distinct perception system. The importance of stereochemistry for bioactivity has been described for the various functions.
        
Title: Strigolactone analogues and mimics derived from phthalimide, saccharine, p-tolylmalondialdehyde, benzoic and salicylic acid as scaffolds Zwanenburg B, Mwakaboko AS Ref: Bioorganic & Medicinal Chemistry, 19:7394, 2011 : PubMed
A series of new strigolactone (SL) analogues is derived from simple and cheap starting materials. These SL analogues are designed using a working model. The first analogue is a modified Nijmegen-1, the second contains saccharin as substituent (bio-isosteric replacement of a carbonyl in Nijmegen-1 by a sulfonyl group) and the third one is derived from p-tolylmalondialdehyde. These new SL analogues are appreciably to highly active as germination stimulants of seeds of Striga hermonthica and Orobanche cernua. The SL analogue derived from saccharin is the most active one. A serendipitous and most rewarding finding is that the compound obtained by a direct coupling of saccharin with the chlorobutenolide exhibits a high germination activity especially towards O. cernua seeds. Two other SL mimics are obtained from benzoic and salicylic aid by a direct coupling reaction with chlorobutenolide, both of them are very active germinating agents. These SL mimics represent a new type of germination stimulants. A tentative molecular mechanism for the mode of action of these SL mimics has been proposed.
Parasitic weeds of the genera Striga and Orobanche are considered the most damaging agricultural agents in the developing world. An essential step in parasitic seed germination is sensing a group of structurally related compounds called strigolactones that are released by host plants. Although this makes strigolactone synthesis and action a major target of biotechnology, little fundamental information is known about this hormone. Chemical genetic screening using Arabidopsis thaliana as a platform identified a collection of related small molecules, cotylimides, which perturb strigolactone accumulation. Suppressor screens against select cotylimides identified light-signaling genes as positive regulators of strigolactone levels. Molecular analysis showed strigolactones regulate the nuclear localization of the COP1 ubiquitin ligase, which in part determines the levels of light regulators such as HY5. This information not only uncovers new functions for strigolactones but was also used to identify rice cultivars with reduced capacity to germinate parasitic seed.
        
Title: SAR studies of sesquiterpene lactones as Orobanche cumana seed germination stimulants Galindo JC, de Luque AP, Jorrin J, Macias FA Ref: Journal of Agricultural and Food Chemistry, 50:1911, 2002 : PubMed
Studies of the structure-activity relationship (SAR) directed to evaluate the effect of several sesquiterpene lactones (SL) as germination stimulants of three Orobanche spp. (O. cumana, O. crenata, and O. ramosa) have been achieved. Results are compared with those obtained in the same bioassay with an internal standard, the synthetic analogue of strigol GR-24. A high specificity in the germination activity of SL on the sunflower parasite O. cumana has been observed, and a relationship between such activity and the high sunflower SL content is postulated. Molecular properties of the natural and synthetic germination stimulants (GR-24, GR-7, and Nijmegen-1) and SL have been studied using MMX and PM3 calculations. Consequently, comparative studies among all of them and their activities have been made. SL tested present similarities in molecular properties such as the volume of the molecule and the spatial disposition of the carbon backbone to the natural germination stimulant orobanchol. These properties could be related to their biological activity.
        
Title: Dose-response of seeds of the parasitic weeds Striga and Orobanche toward the synthetic germination stimulants GR 24 and Nijmegen 1 Wigchert SC, Kuiper E, Boelhouwer GJ, Nefkens GH, Verkleij JA, Zwanenburg B Ref: Journal of Agricultural and Food Chemistry, 47:1705, 1999 : PubMed
Striga and Orobanche seeds germinate in response to a host-derived germination stimulant. Dose-response curves of the synthetic strigolactone analogues GR 24 and Nijmegen 1 were determined, and their activities were compared to that of the naturally occurring stimulant sorgolactone. Typical sigmoidal curves were obtained. ED(50) values for GR 24 were in the order of 10(-)(9)-10(-)(8) mol/L; for Nijmegen 1 these values were 3 orders of magnitude higher. Both synthetic stimulants are appreciably active at low concentrations and merit investigation as agents for the suicidal germination approach (i.e., treatment of the soil with stimulant in the absence of a host).