Direct-acting neuropathy target esterase (NTE) inhibitor. Amide analog of DFP. M44 CID 44608019 is the hydrolysed form found in crystal structure of organophosphate anhydrolase/prolidase 3L7G
8 moreTitle: Resolving pathways of interaction of mipafox and a sarin analog with human acetylcholinesterase by kinetics, mass spectrometry and molecular modeling approaches Mangas I, Taylor P, Vilanova E, Estevez J, Franca TCC, Komives E, Radic Z Ref: Archives of Toxicology, 90:603, 2016 : PubMed
The hydroxyl oxygen of the catalytic triad serine in the active center of serine hydrolase acetylcholinesterase (AChE) attacks organophosphorus compounds (OPs) at the phosphorus atom to displace the primary leaving group and to form a covalent bond. Inhibited AChE can be reactivated by cleavage of the Ser-phosphorus bond either spontaneously or through a reaction with nucleophilic agents, such as oximes. At the same time, the inhibited AChE adduct can lose part of the molecule by progressive dealkylation over time in a process called aging. Reactivation of the aged enzyme has not yet been demonstrated. Here, our goal was to study oxime reactivation and aging reactions of human AChE inhibited by mipafox or a sarin analog (Flu-MPs, fluorescent methylphosphonate). Progressive reactivation was observed after Flu-MPs inhibition using oxime 2-PAM. However, no reactivation was observed after mipafox inhibition with 2-PAM or the more potent oximes used. A peptide fingerprinted mass spectrometry (MS) method, which clearly distinguished the peptide with the active serine (active center peptide, ACP) of the human AChE adducted with OPs, was developed by MALDI-TOF and MALDI-TOF/TOF. The ACP was detected with a diethyl-phosphorylated adduct after paraoxon inhibition, and with an isopropylmethyl-phosphonylated and a methyl-phosphonylated adduct after Flu-MPs inhibition and subsequent aging. Nevertheless, nonaged nonreactivated complexes were seen after mipafox inhibition and incubation with oximes, where MS data showed an ACP with an NN diisopropyl phosphoryl adduct. The kinetic experiments showed no reactivation of activity. The computational molecular model analysis of the mipafox-inhibited hAChE plots of energy versus distance between the atoms separated by dealkylation showed a high energy demand, thus little aging probability. However, with Flu-MPs and DFP, where aging was observed in our MS data and in previously published crystal structures, the energy demand calculated in modeling was lower and, consequently, aging appeared as a more likely reaction. We document here direct evidence for a phosphorylated hAChE refractory to oxime reactivation, although we observed no aging.
        
Title: Cholinesterases of heart muscle. Characterization of multiple enzymes using kinetics of irreversible organophosphorus inhibition Chemnitius JM, Chemnitius GC, Haselmeyer KH, Kreuzer H, Zech R Ref: Biochemical Pharmacology, 43:823, 1992 : PubMed
Cholinesterases of porcine left ventricular heart muscle were characterized with respect to substrate specificity and inhibition kinetics with organophosphorus inhibitors N,N'-di-isopropyl-phosphorodiamidic fluoride (Mipafox), di-isopropylphosphorofluoridate (DFP), and diethyl p-nitro-phenyl phosphate (Paraoxon). Total myocardial choline ester hydrolysing activity (234 nmol/min/g wet wt with 1.5 mM acetylthiocholine, ASCh; 216 nmol/min/g with 30 mM butyrylthiocholine, BSCh) was irreversibly and covalently inhibited by a wide range of inhibitor concentrations and, using weighted least-squares non-linear curve fitting, residual activities as determined with four different substrates in each case were fitted to a sum of up to four exponential functions. Quality of curve fitting as assessed by the sum of squares reached its optimum on the basis of a three component model, thus, indicating the presence of three different enzymes taking part in choline ester hydrolysis. Final classification of heart muscle cholinesterases was obtained according to both substrate hydrolysis patterns with ASCh, BSCh, acetyl-beta-methylthiocholine and propionylthiocholine, and second-order rate constants for the reaction with organophosphorus inhibitors Mipafox, DFP, and Paraoxon. One choline ester-hydrolysing enzyme was identified as acetylcholinesterase (EC 3.1.1.7), and one as butyrylcholinesterase (EC 3.1.1.8). The third enzyme with relative resistance to organophosphorus inhibition was classified as atypical cholinesterase.
        
Title: Mechanisms involved in the development of tolerance to DFP toxicity Gupta RC, Patterson GT, Dettbarn WD Ref: Fundamental & Applied Toxicology, 5:S17, 1985 : PubMed
Rats treated daily with diisopropylfluorophosphate (DFP) (0.5 mg/kg, sc), an inhibitor of acetylcholinesterase (AChE) activity, exhibited the symptoms of cholinergic hyperactivity between Days 3 and 5 similar to those observed 15 min after a single acute dosage (1.5 mg/kg, sc). A significant (p less than 0.05) decrease in the activities of both AChE and cholinesterase (BuChE) (greater than 80%) occurred in muscles and in brain regions and of aliesterases in liver (greater than 92%) at this time. Further administration of DFP (0.5 mg/kg, for 7-14 days) led to behavioral tolerance, where symptoms of toxicity disappeared such as muscle fasciculations, tremors, and muscle necrosis. The activity of aliesterases in liver and AChE in muscles significantly (p less than 0.01) recovered, while no such recovery was seen in brain AChE. DFP toxicity was potentiated in rats that were pretreated with BuChE inhibitors, such as iso-OMPA (3 mg/kg, sc) or mipafox (0.05 mg/kg, sc), 30 min prior to DFP (0.5 mg/kg, sc). The severity of cholinergic hyperactivity and inhibition of aliesterase in liver, AChE and BuChE activity in brain and muscles was greater when compared to the effects of DFP alone. Both iso-OMPA and mipafox completely abolished the tolerance development to DFP, since no animal survived more than 5 days of combined treatment. The observed adaptation to DFP toxicity appears to be due to recovery of aliesterase, BuChE, and AChE activity as well as decreased nicotinic binding sites at the neuromuscular junction, as previously reported.
        
8 lessTitle: Resolving pathways of interaction of mipafox and a sarin analog with human acetylcholinesterase by kinetics, mass spectrometry and molecular modeling approaches Mangas I, Taylor P, Vilanova E, Estevez J, Franca TCC, Komives E, Radic Z Ref: Archives of Toxicology, 90:603, 2016 : PubMed
The hydroxyl oxygen of the catalytic triad serine in the active center of serine hydrolase acetylcholinesterase (AChE) attacks organophosphorus compounds (OPs) at the phosphorus atom to displace the primary leaving group and to form a covalent bond. Inhibited AChE can be reactivated by cleavage of the Ser-phosphorus bond either spontaneously or through a reaction with nucleophilic agents, such as oximes. At the same time, the inhibited AChE adduct can lose part of the molecule by progressive dealkylation over time in a process called aging. Reactivation of the aged enzyme has not yet been demonstrated. Here, our goal was to study oxime reactivation and aging reactions of human AChE inhibited by mipafox or a sarin analog (Flu-MPs, fluorescent methylphosphonate). Progressive reactivation was observed after Flu-MPs inhibition using oxime 2-PAM. However, no reactivation was observed after mipafox inhibition with 2-PAM or the more potent oximes used. A peptide fingerprinted mass spectrometry (MS) method, which clearly distinguished the peptide with the active serine (active center peptide, ACP) of the human AChE adducted with OPs, was developed by MALDI-TOF and MALDI-TOF/TOF. The ACP was detected with a diethyl-phosphorylated adduct after paraoxon inhibition, and with an isopropylmethyl-phosphonylated and a methyl-phosphonylated adduct after Flu-MPs inhibition and subsequent aging. Nevertheless, nonaged nonreactivated complexes were seen after mipafox inhibition and incubation with oximes, where MS data showed an ACP with an NN diisopropyl phosphoryl adduct. The kinetic experiments showed no reactivation of activity. The computational molecular model analysis of the mipafox-inhibited hAChE plots of energy versus distance between the atoms separated by dealkylation showed a high energy demand, thus little aging probability. However, with Flu-MPs and DFP, where aging was observed in our MS data and in previously published crystal structures, the energy demand calculated in modeling was lower and, consequently, aging appeared as a more likely reaction. We document here direct evidence for a phosphorylated hAChE refractory to oxime reactivation, although we observed no aging.
Inhibition and aging of neuropathy target esterase (NTE) by neuropathic organophosphorus (OP) compounds triggers OP compound-induced delayed neuropathy (OPIDN), whereas inhibition of acetylcholinesterase (AChE) produces cholinergic toxicity. The neuropathic potential of an OP compound is defined by its relative inhibitory potency toward NTE vs. AChE assessed by enzyme assays following dosing in vivo or after incubations of direct-acting compounds or active metabolites with enzymes in vitro. The standard animal model of OPIDN is the adult hen, but its large size and high husbandry costs make this species a burdensome model for assessing neuropathic potential. Although the mouse does not readily exhibit clinical signs of OPIDN, it displays axonal lesions and expresses brain AChE and NTE. Therefore, the present research was performed as a further test of the hypothesis that inhibition of mouse brain AChE and NTE could be used to assess neuropathic potential using mouse brain preparations in vitro or employing mouse brain assays following dosing of OP compounds in vivo. Excellent correlations were obtained for inhibition kinetics in vitro of mouse brain enzymes vs. hen brain and human recombinant enzymes. Furthermore, inhibition of mouse brain AChE and NTE after dosing with OP compounds afforded ED50 ratios that agreed with relative inhibitory potencies assessed in vitro. Taken together, results with mouse brain enzymes demonstrated consistent correspondence between in vitro and in vivo predictors of neuropathic potential, thus adding to previous studies supporting the validity of a mouse model for biochemical assessment of the ability of OP compounds to produce OPIDN. Copyright (c) 2014 John Wiley & Sons, Ltd.
        
Title: Organophosphate inhibition of human heart muscle cholinesterase isoenzymes Chemnitius JM, Sadowski R, Winkel H, Zech R Ref: Chemico-Biological Interactions, 119-120:183, 1999 : PubMed
The rate of acetylcholine hydrolysis of mammalian heart muscle influences cardiac responses to vagal innervation. We characterized cholinesterases of human left ventricular heart muscle with respect to both substrate specificity and irreversible inhibition kinetics with the organophosphorus inhibitor N,N'-di-isopropylphosphorodiamidic fluoride (mipafox). Specimens were obtained postmortem from three men and four women (61 +/- 5 years) with no history of cardiovascular disease. Myocardial choline ester hydrolyzing activity was determined with acetylthiocholine (ASCh; 1.25 mM), acetyl-beta-methylthiocholine (AbetaMSCh; 2.0 mM), and butyrylthiocholine (BSCh; 30 mM). After irreversible and covalent inhibition (60 min; 25 degrees C) with a wide range of mipafox concentrations (50 nM-5 mM), residual choline ester hydrolyzing activities were fitted to a sum of up to five exponentials using weighted least-squares non-linear curve fitting. In each ease, quality of curve fitting reached its optimum on the basis of a four component model. Final classification of heart muscle cholinesterases was achieved according to substrate hydrolysis patterns (nmol/min per g wet weight) and to second-order organophosphate inhibition rate constants k2 (1/mol per min); one choline ester hydrolyzing enzyme was identified as acetylcholinesterase (AChE; k2/mipafox = 6.1 (+/- 0.8) x 10(2)), and one as butyrylcholinesterase (BChE; k2/mipafox = 5.3 (+/- 1.1) x 10(3)). An enzyme exhibiting both ChE-like substrate specificity and relative resistance to mipafox inhibition (k2/mipafox = 5.2 (+/- 1.0) x 10(-1)) was classified as atypical cholinesterase.
        
Title: Inhibition of carboxylesterases in SH-SY5Y human and NB41A3 mouse neuroblastoma cells by organophosphorus esters Ehrich M, Correll L Ref: J Toxicol Environ Health, 53:385, 1998 : PubMed
Carboxylesterases (CbxE) can be inhibited by organophosphorus esters (OPs) without causing clinical evidence of toxicity. CbxE are thought to protect the critical enzyme acetylcholinesterase (AChE) from OP inhibition in animals. CbxE and AChE are both present in neuroblastoma cells, but, even though these cells have potential to be an in vitro model of OP toxicity, the effect of OPs on CbxE and the relationship of CbxE inhibition and AChE inhibition have not yet been examined in these cells. Therefore, this study examined concentration-related OP-induced inhibition of CbxE in human SH-SY5Y and mouse NB41A3 neuroblastoma cells with 11 active esterase inhibitors: paraoxon, malaoxon, chlorpyrifos-oxon, tolyl saligenin phosphate (TSP), phenyl saligenin phosphate (PSP), diisopropyl phosphorofluoridate (DFP), mipafox, dichlorvos, trichlorfon, dibutyryl dichlorovinyl phosphate (DBVP), and dioctyl dichlorovinyl phosphate (DOVP). All could inhibit CbxE, although the enzyme was less likely to be inhibited than AChE following exposure to 9 of the test compounds in the human cell line and to all 11 of the test compounds in the murine cell line. Species differences in concentration-related inhibitions of CbxE were evident. When cells were exposed first to an OP with a low IC50 toward CbxE (PSP), followed by an OP with high affinity for AChE (paraoxon or malaoxon), inhibitions of CbxE and AChE were additive. This indicated that CbxE did not protect AChE from OP-induced inhibition in this cell culture model.
        
Title: A comparison of the electrophysiological effects of two organophosphates, mipafox and ecothiopate, on mouse limb muscles de Blaquiere GE, Williams FM, Blain PG, Kelly SS Ref: Toxicol Appl Pharmacol, 150:350, 1998 : PubMed
Adult male albino mice were given single subcutaneous injections of either mipafox (110 mumol/kg) or ecothiopate (0.5 mumol/kg), two organophosphorus compounds (OPs). Acetylcholinesterase activity was measured in the soleus (slow-twitch) and extensor digitorum longus (EDL; fast-twitch) muscles. At 7 and 28 days after dosing, in vitro electrophysiological measurements were carried out in the soleus and EDL. Action potentials and end-plate potentials were evoked at 30 Hz and recorded intracellularly from single muscle fibers. The amplitudes, time course, and latencies of these potentials were measured and the variability (jitter) of latencies was calculated. Recordings after mipafox were also made with 3-Hz stimulation. Acetylcholinesterase activity was inhibited by mipafox (65% in the soleus; 76% in the EDL) and ecothiopate (59% in the soleus; 42% in the EDL). Mipafox and ecothiopate both increased postjunctional (muscle action potential) jitter in the soleus and EDL at 7 days after dosing. Organophosphates caused an increase in end-plate potential amplitudes in the soleus. Mipafox caused an increase in prejunctional (end-plate potential) jitter at 28 days after dosing in both muscles. A single dose of ecothiopate also caused an increase in prejunctional jitter at 28 days in the soleus. The OP-induced increase in jitter was different at different frequencies of stimulation. The results show that there are electrophysiological changes in both muscles after administration of organophosphorus compounds. The slow-twitch soleus appears more sensitive to prejunctional changes caused by OPs than the fast-twitch EDL.
        
Title: Mipafox differential inhibition assay for heart muscle cholinesterases: substrate specificity and inhibition of three isoenzymes by physostigmine and quinidine Chemnitius JM, Haselmeyer KH, Gonska BD, Kreuzer H, Zech R Ref: General Pharmacology, 28:567, 1997 : PubMed
1. A differential inhibition assay was developed for the quantitative determination of cholinesterase isoenzymes acetylcholinesterase (AChE; EC 3.1.1.7), cholinesterase (BChE; EC 3.1.1.8), and atypical cholinesterase in small samples of left ventricular porcine heart muscle. 2. The assay is based on kinetic analysis of irreversible cholinesterase inhibition by the organophosphorus compound N,N'-di-isopropylphosphorodiamidic fluoride (mipafox). With acetylthiocholine (ASCh) as substrate (1.25 mM), hydrolytic activities (A) of cholinesterase isoenzymes were determined after preincubation (60 min, 25 degrees C) of heart muscle samples with either saline (total activity, A tau), 7 microM mipafox (AM1), or 0.8 mM mipafox (AM2): (BChE) = A tau-AM1, (AChE) = AM1-AM2, (Atypical ChE) = AM2. 3. The mipafox differential inhibition assay was used to determine the substrate hydrolysis patterns of myocardial cholinesterases with ASCh, acetyl-beta-methylthiocholine (A beta MSCh), propionylthiocholine (PSCh), and butyrylthiocholine (BSCh). The substrate specificities of myocardial AChE and BChE resemble those of erythrocyte AChE and serum BChE, respectively. Michaelis constants KM with ASCh were determined to be 0.15 mM for AChE and 1.4 mM for BChE. 4. Atypical cholinesterase, in respect to both substrate specificity and inhibition kinetics, differs from cholinesterase activities of vertebrate tissue and, up to now, could be identified exclusively in heart muscle. The enzyme's Michaelis constant with ASCh was determined to be 4.0 mM. 5. The reversible inhibitory effects of physostigmine (eserine) and quinidine on heart muscle cholinesterases were investigated using the differential inhibition assay. With all three isoenzymes, the inhibition kinetics of both substances were strictly competitive. The physostigmine inhibition of AChE was most pronounced (Ki = 0.22 microM). Quinidine most potently inhibited myocardial BChE (Ki = 35 microM).
        
Title: Acetylcholinesterase and neuropathy target esterase inhibitions in neuroblastoma cells to distinguish organophosphorus compounds causing acute and delayed neurotoxicity Ehrich M, Correll L, Veronesi B Ref: Fundamental & Applied Toxicology, 38:55, 1997 : PubMed
The differential inhibition of the target esterases acetylcholinesterase (AChE) and neuropathy target esterase (NTE, neurotoxic esterase) by organophosphorus compounds (OPs) is followed by distinct neurological consequences in exposed subjects. The present study demonstrates that neuroblastoma cell lines (human SH-SY5Y and murine NB41A3) can be used to differentiate between neuropathic OPs (i.e., those inhibiting NTE and causing organophosphorus-induced delayed neuropathy) and acutely neurotoxic OPs (i.e., those highly capable of inhibiting AChE). In these experiments, concentration-response data indicated that the capability to inhibit AChE was over 100x greater than the capability to inhibit NTE for acutely toxic, nonneuropathic OPs (e.g., paraoxon and malaoxon) in both cell lines. Inhibition of AChE was greater than inhibition of NTE, without overlap of the concentration-response curves, for OPs which are more likely to cause acute, rather than delayed, neurotoxic effects in vivo (e.g., chlorpyrifos-oxon, dichlorvos, and trichlorfon). In contrast, concentrations inhibiting AChE and NTE overlapped for neuropathy-causing OPs. For example, apparent IC50 values for NTE inhibition were less than 9.6-fold the apparent IC50 values for AChE inhibition when cells were exposed to the neuropathy-inducing OPs diisopropyl phosphorofluoridate, cyclic tolyl saligenin phosphate, phenyl saligenin phosphate, mipafox, dibutyl dichlorovinyl phosphate, and di-octyl-dichlorovinyl phosphate. In all cases, esterase inhibition occurred at lower concentrations than those needed for cytoxicity. These results suggest that either mouse or human neuroblastoma cell lines can be considered useful in vitro models to distinguish esterase-inhibiting OP neurotoxicants.
1. Multiple low doses of the direct acting organophosphates, ecothiopate, paraoxon and mipafox produced persistent and additive inhibition of diaphragm acetylcholinesterase. Paraoxon and mipafox had similar effects on brain acetylcholinesterase. There was greater recovery from inhibition between doses for paraoxon and ecothiopate than for mipafox. 2. Ecothiopate did not inhibit brain acetylcholinesterase but there was a small increase in activity. 3. Mipafox also had a cumulative inhibitory effect on brain neuropathy target esterase. 4. These results have particular implication for the use of multiple low doses of organophosphates occupationally by man.
        
Title: Comparison of the relative inhibition of acetylcholinesterase and neuropathy target esterase in rats and hens given cholinesterase inhibitors Ehrich M, Jortner BS, Padilla S Ref: Fundamental & Applied Toxicology, 24:94, 1995 : PubMed
Inhibition of neuropathy target esterase (NTE, neurotoxic esterase) and acetylcholinesterase (AChE) activities was compared in brain and spinal cords of adult While Leghorn hens and adult male Long Evan rats 4-48 hr after administration of triortho-tolyl phosphate (TOTP po, 50-500 mg/kg to hens; 300-1000 mg/kg to rats), phenyl saligenin phosphate (PSP im 0.1-2.5 mg/kg to hens; 5-24 mg/kg to rats), mipafox (3-30 mg/kg ip to hens and rats), diisopropyl phosphorofluoridate (DFP sc, 0.25-1.0 mg/kg to hens; 1-3 mg/kg to rats), dichlorvos (5-60 mg/kg ip to hens; 600-2000 mg/kg to rats), and carbaryl (300-560 mg/kg ip to hens; 30-170 mg/kg to rats). Inhibitions of NTE and AChE were dose-related after administration of all compounds to both species. Hens and rats given TOTP, PSP, mipafox, and DFP demonstrated delayed neuropathy 3 weeks later, with spinal cord lesions and clinical signs more notable in hens. Ratios of NTE/AChE inhibition in hen spinal cord, averaged over the doses used, were 2.6 after TOTP, 5.2 after PSP, 1.3 after mipafox, and 0.9 after DFP, which contrast with 0.53 after dichlorvos, 1.0 after malathion, and 0.46 after carbaryl. Rat NTE/AChE inhibition ratios were 0.9 after TOTP, 2.6 after PSP, 1.0 after mipafox, 0.62 after DFP, 1.3 after dichlorvos, 2.2 after malathion, and 1.1 after carbaryl. The lower NTE/AChE ratios in rats given dosages of the four organophosphorus compounds that caused delayed neuropathy interferred with survival, an effect that was not a problem in hens.
        
Title: Cholinesterases of heart muscle. Characterization of multiple enzymes using kinetics of irreversible organophosphorus inhibition Chemnitius JM, Chemnitius GC, Haselmeyer KH, Kreuzer H, Zech R Ref: Biochemical Pharmacology, 43:823, 1992 : PubMed
Cholinesterases of porcine left ventricular heart muscle were characterized with respect to substrate specificity and inhibition kinetics with organophosphorus inhibitors N,N'-di-isopropyl-phosphorodiamidic fluoride (Mipafox), di-isopropylphosphorofluoridate (DFP), and diethyl p-nitro-phenyl phosphate (Paraoxon). Total myocardial choline ester hydrolysing activity (234 nmol/min/g wet wt with 1.5 mM acetylthiocholine, ASCh; 216 nmol/min/g with 30 mM butyrylthiocholine, BSCh) was irreversibly and covalently inhibited by a wide range of inhibitor concentrations and, using weighted least-squares non-linear curve fitting, residual activities as determined with four different substrates in each case were fitted to a sum of up to four exponential functions. Quality of curve fitting as assessed by the sum of squares reached its optimum on the basis of a three component model, thus, indicating the presence of three different enzymes taking part in choline ester hydrolysis. Final classification of heart muscle cholinesterases was obtained according to both substrate hydrolysis patterns with ASCh, BSCh, acetyl-beta-methylthiocholine and propionylthiocholine, and second-order rate constants for the reaction with organophosphorus inhibitors Mipafox, DFP, and Paraoxon. One choline ester-hydrolysing enzyme was identified as acetylcholinesterase (EC 3.1.1.7), and one as butyrylcholinesterase (EC 3.1.1.8). The third enzyme with relative resistance to organophosphorus inhibition was classified as atypical cholinesterase.
        
Title: Mechanisms involved in the development of tolerance to DFP toxicity Gupta RC, Patterson GT, Dettbarn WD Ref: Fundamental & Applied Toxicology, 5:S17, 1985 : PubMed
Rats treated daily with diisopropylfluorophosphate (DFP) (0.5 mg/kg, sc), an inhibitor of acetylcholinesterase (AChE) activity, exhibited the symptoms of cholinergic hyperactivity between Days 3 and 5 similar to those observed 15 min after a single acute dosage (1.5 mg/kg, sc). A significant (p less than 0.05) decrease in the activities of both AChE and cholinesterase (BuChE) (greater than 80%) occurred in muscles and in brain regions and of aliesterases in liver (greater than 92%) at this time. Further administration of DFP (0.5 mg/kg, for 7-14 days) led to behavioral tolerance, where symptoms of toxicity disappeared such as muscle fasciculations, tremors, and muscle necrosis. The activity of aliesterases in liver and AChE in muscles significantly (p less than 0.01) recovered, while no such recovery was seen in brain AChE. DFP toxicity was potentiated in rats that were pretreated with BuChE inhibitors, such as iso-OMPA (3 mg/kg, sc) or mipafox (0.05 mg/kg, sc), 30 min prior to DFP (0.5 mg/kg, sc). The severity of cholinergic hyperactivity and inhibition of aliesterase in liver, AChE and BuChE activity in brain and muscles was greater when compared to the effects of DFP alone. Both iso-OMPA and mipafox completely abolished the tolerance development to DFP, since no animal survived more than 5 days of combined treatment. The observed adaptation to DFP toxicity appears to be due to recovery of aliesterase, BuChE, and AChE activity as well as decreased nicotinic binding sites at the neuromuscular junction, as previously reported.