found also in complex with patatin-17 and fatty acid amide hydrolase (amidase superfamily) (MAFP) and related analogs have been shown to inhibit fatty acid amidohydrolase activity (FAAH)(not an alpha/beta hydrolase), the enzyme responsible for hydrolysis of the endogenous cannabinoid ligand anandamide. MAFP inhibits ABHD4. and PLA2G15 which are alpha/beta hydrolases (and also GIVA PLA2 not ABHyd)
4 structures(e.g. : 4X95, 4X93, 4X94... more)(less)4X95: Crystal structure of fully glycosylated Lysosomal Phospholipase A2 in complex with methyl arachidonyl fluorophosphonate (MAFP), 4X93: Crystal structure of Lysosomal Phospholipase A2 crystallized in the presence of methyl arachidonyl fluorophosphonate (tetragonal form), 4X94: Crystal structure of Lysosomal Phospholipase A2 crystallized in the presence of methyl arachidonyl fluorophosphonate (hexagonal form), 4X97: Crystal structure of Lysosomal Phospholipase A2 in complex with methyl arachidonyl fluorophosphonate (MAFP)
2-Arachidonoyl-glycerol (2-AG) is an endocannabinoid with anti-inflammatory properties. Blocking 2-AG hydrolysis to enhance CB2 signaling has proven effective in mouse models of inflammation. However, the expression of 2-AG lipases has never been thoroughly investigated in human leukocytes. Herein, we investigated the expression of seven 2-AG hydrolases by human blood leukocytes and alveolar macrophages (AMs) and found the following protein expression pattern: monoacylglycerol (MAG lipase; eosinophils, AMs, monocytes), carboxylesterase (CES1; monocytes, AMs), palmitoyl-protein thioesterase (PPT1; AMs), alpha/beta-hydrolase domain (ABHD6; mainly AMs), ABHD12 (all), ABHD16A (all), and LYPLA2 (lysophospholipase 2; monocytes, lymphocytes, AMs). We next found that all leukocytes could hydrolyze 2-AG and its metabolites derived from cyclooxygenase-2 (prostaglandin E2 -glycerol [PGE2 -G]) and the 15-lipoxygenase (15-hydroxy-eicosatetraenoyl-glycerol [15-HETE-G]). Neutrophils and eosinophils were consistently better at hydrolyzing 2-AG and its metabolites than monocytes and lymphocytes. Moreover, the efficacy of leukocytes to hydrolyze 2-AG and its metabolites was 2-AG >/= 15-HETE-G >> PGE2 -G for each leukocyte. Using the inhibitors methylarachidonoyl-fluorophosphonate (MAFP), 4-nitrophenyl-4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxyla te (JZL184), Palmostatin B, 4'-carbamoylbiphenyl-4-yl methyl(3-(pyridin-4-yl)benzyl)carbamate, N-methyl-N-[[3-(4-pyridinyl)phenyl]methyl]-4'-(aminocarbonyl)[1,1'-biphenyl]-4-yl ester carbamic acid (WWL70), 4'-[[[methyl[[3-(4-pyridinyl)phenyl]methyl]amino]carbonyl]oxy]-[1,1'-biphenyl]-4- carboxylic acid, ethyl ester (WWL113), tetrahydrolipstatin, and ML349, we could not pinpoint a specific hydrolase responsible for the hydrolysis of 2-AG, PGE2 -G, and 15-HETE-G by these leukocytes. Furthermore, JZL184, a selective MAG lipase inhibitor, blocked the hydrolysis of 2-AG, PGE2 -G, and 15-HETE-G by neutrophils and the hydrolysis of PGE2 -G and 15-HETE-G by lymphocytes, two cell types with limited/no MAG lipase. Using an activity-based protein profiling (ABPP) probe to label hydrolases in leukocytes, we found that they express many MAFP-sensitive hydrolases and an unknown JZL184-sensitive hydrolase of approximately 52 kDa. Altogether, our results indicate that human leukocytes are experts at hydrolyzing 2-AG and its metabolites via multiple lipases and probably via a yet-to-be characterized 52 kDa hydrolase. Blocking 2-AG hydrolysis in humans will likely abrogate the ability of human leukocytes to degrade 2-AG and its metabolites and increase their anti-inflammatory effects in vivo.
        
Title: Endocannabinoid biosynthesis proceeding through glycerophospho-N-acyl ethanolamine and a role for alpha/beta-hydrolase 4 in this pathway Simon GM, Cravatt BF Ref: Journal of Biological Chemistry, 281:26465, 2006 : PubMed
N-Acyl ethanolamines (NAEs) are a large class of signaling lipids implicated in diverse physiological processes, including nociception, cognition, anxiety, appetite, and inflammation. It has been proposed that NAEs are biosynthesized from their corresponding N-acyl phosphatidylethanolamines (NAPEs) in a single enzymatic step catalyzed by a phospholipase D (NAPE-PLD). The recent generation of NAPE-PLD(-/-) mice has revealed that these animals possess lower brain levels of saturated NAEs but essentially unchanged concentrations of polyunsaturated NAEs, including the endogenous cannabinoid anandamide. These findings suggest the existence of additional enzymatic routes for the production of NAEs in vivo. Here, we report evidence for an alternative pathway for NAE biosynthesis that proceeds through the serine hydrolase-catalyzed double-deacylation of NAPE to generate glycerophospho-NAE, followed by the phosphodiesterase-mediated cleavage of this intermediate to liberate NAE. Furthermore, we describe the functional proteomic isolation and identification of a heretofore uncharacterized enzyme alpha/beta-hydrolase 4 (Abh4) as a lysophospholipase/phospholipase B that selectively hydrolyzes NAPEs and lysoNAPEs. Abh4 accepts lysoNAPEs bearing both saturated and polyunsaturated N-acyl chains as substrates and displays a distribution that closely mirrors lysoNAPE-lipase activity in mouse tissues. These results support the existence of an NAPE-PLD-independent route for NAE biosynthesis and suggest that Abh4 plays a role in this metabolic pathway by acting as a (lyso)NAPE-selective lipase.
Methylarachidonylfluorophosphonate (MAFP) and related analogs have been shown to inhibit fatty acid amidohydrolase activity (FAAH), the enzyme responsible for hydrolysis of the endogenous cannabinoid ligand anandamide. To fully characterize this class of compounds, methylfluorophosphonate compounds with saturated alkyl chains ranging from C8 to C20 along with C20 unsaturated derivatives were synthesized and evaluated for their ability to interact with the CB1 receptor, inhibit FAAH, and produce in vivo pharmacological effects. These analogs demonstrated widely varying affinities for the CB1 receptor. Of the saturated compounds, C8:0 was incapable of displacing [(3)H]CP 55,940 binding, whereas C12:0 exhibited high affinity (2.5 nM). The C20:0 saturated analog had low affinity (900 nM), but the introduction of unsaturation into the C20 analogs restored receptor affinity. However, none of the analogs were capable of fully displacing [(3)H]CP 55,940 binding. On the other hand, all compounds were able to completely inhibit FAAH enzyme activity, with the C20:0 analog being the least potent. The most potent FAAH inhibitor was the short-chained saturated C12:0, whereas the other analogs were 15- to 30-fold less potent. In vivo, the C8:0 and C12:0 analogs were highly potent and fully efficacious in producing tetrahydrocannabinol (THC)-like effects, whereas the other analogs were either inactive or acted as partial agonists. None was capable of attenuating the agonist effects of THC. Conversely, the C20:0 analog potentiated the effects of anandamide but not those of 2-arachidonoyl-glycerol and THC. The high in vivo potency of the novel short-chain saturated MAFP derivatives (C8:0 and C12:0) underscores the complexity of manipulating the endogenous cannabinoid system.
        
8 lessTitle: Structure and Dynamics of an Archeal Monoglyceride Lipase from Palaeococcus ferrophilus as Revealed by Crystallography and In Silico Analysis Labar G, Brandt N, Flaba A, Wouters J, Leherte L Ref: Biomolecules, 11:533, 2021 : PubMed
The crystallographic analysis of a lipase from Palaeococcus ferrophilus (PFL) previously annotated as a lysophospholipase revealed high structural conservation with other monoglyceride lipases, in particular in the lid domain and substrate binding pockets. In agreement with this observation, PFL was shown to be active on various monoacylglycerols. Molecular Dynamics (MD) studies performed in the absence and in the presence of ligands further allowed characterization of the dynamics of this system and led to a systematic closure of the lid compared to the crystal structure. However, the presence of ligands in the acyl-binding pocket stabilizes intermediate conformations compared to the crystal and totally closed structures. Several lid-stabilizing or closure elements were highlighted, i.e., hydrogen bonds between Ser117 and Ile204 or Asn142 and its facing amino acid lid residues, as well as Phe123. Thus, based on this complementary crystallographic and MD approach, we suggest that the crystal structure reported herein represents an open conformation, at least partially, of the PFL, which is likely stabilized by the ligand, and it brings to light several key structural features prone to participate in the closure of the lid.
The endocannabinoid system is implicated in a plethora of neuropsychiatric disorders. However, it is technically challenging to assess the turnover of 2-arachidonoyl glycerol (2-AG), the principal endocannabinoid molecule in the brain. Two recent studies showed that diacylglycerol lipase alpha (DAGLalpha), an enzyme chiefly responsible for the cerebral production of 2-AG, also accepts the surrogate chromogenic substrate 4-nitrophenyl butyrate (4-NPB). Here, we aimed to optimize this spectrophotometric assay for ex vivo brain tissue, in particular, rat cerebrocortical homogenates, to measure the activity of the major enzymes responsible for the production and degradation of 2-AG. The initial velocity of 4-NPB hydrolysis was dependent on protein, substrate, and Ca(2+) concentrations, and was sensitive to the non-selective serine hydrolase inhibitor, methoxy arachidonyl fluorophosphonate, the DAGLalpha inhibitors, OMDM188, tetrahydrolipstatin, and RHC80267, as well as the monoacylglycerol lipase (MAGL) inhibitor, JZL184, respectively. Next, we tested the usefulness of this assay in ex vivo brain tissue of rat models of human health conditions known to affect cerebrocortical 2-AG production, i.e. pathological stress and sporadic Alzheimer's disease (AD). In rats submitted to chronic restraint stress, cortical CB(1) R density was significantly decreased, as assessed with radioligand binding. Nevertheless, 4-NPB hydrolysis remained at control levels. However, in rats 4 weeks after intracerebroventricular injection with streptozotocin - an established model of sporadic AD -, both CB(1) R levels and 4-NPB hydrolysis and its DAGL- and MAGL-dependent fractions were significantly increased. Altogether, we optimized a simple complementary ex vivo technique for the quantification of DAGL and MAGL activity in brain samples.
2-Arachidonoyl-glycerol (2-AG) is an endocannabinoid with anti-inflammatory properties. Blocking 2-AG hydrolysis to enhance CB2 signaling has proven effective in mouse models of inflammation. However, the expression of 2-AG lipases has never been thoroughly investigated in human leukocytes. Herein, we investigated the expression of seven 2-AG hydrolases by human blood leukocytes and alveolar macrophages (AMs) and found the following protein expression pattern: monoacylglycerol (MAG lipase; eosinophils, AMs, monocytes), carboxylesterase (CES1; monocytes, AMs), palmitoyl-protein thioesterase (PPT1; AMs), alpha/beta-hydrolase domain (ABHD6; mainly AMs), ABHD12 (all), ABHD16A (all), and LYPLA2 (lysophospholipase 2; monocytes, lymphocytes, AMs). We next found that all leukocytes could hydrolyze 2-AG and its metabolites derived from cyclooxygenase-2 (prostaglandin E2 -glycerol [PGE2 -G]) and the 15-lipoxygenase (15-hydroxy-eicosatetraenoyl-glycerol [15-HETE-G]). Neutrophils and eosinophils were consistently better at hydrolyzing 2-AG and its metabolites than monocytes and lymphocytes. Moreover, the efficacy of leukocytes to hydrolyze 2-AG and its metabolites was 2-AG >/= 15-HETE-G >> PGE2 -G for each leukocyte. Using the inhibitors methylarachidonoyl-fluorophosphonate (MAFP), 4-nitrophenyl-4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxyla te (JZL184), Palmostatin B, 4'-carbamoylbiphenyl-4-yl methyl(3-(pyridin-4-yl)benzyl)carbamate, N-methyl-N-[[3-(4-pyridinyl)phenyl]methyl]-4'-(aminocarbonyl)[1,1'-biphenyl]-4-yl ester carbamic acid (WWL70), 4'-[[[methyl[[3-(4-pyridinyl)phenyl]methyl]amino]carbonyl]oxy]-[1,1'-biphenyl]-4- carboxylic acid, ethyl ester (WWL113), tetrahydrolipstatin, and ML349, we could not pinpoint a specific hydrolase responsible for the hydrolysis of 2-AG, PGE2 -G, and 15-HETE-G by these leukocytes. Furthermore, JZL184, a selective MAG lipase inhibitor, blocked the hydrolysis of 2-AG, PGE2 -G, and 15-HETE-G by neutrophils and the hydrolysis of PGE2 -G and 15-HETE-G by lymphocytes, two cell types with limited/no MAG lipase. Using an activity-based protein profiling (ABPP) probe to label hydrolases in leukocytes, we found that they express many MAFP-sensitive hydrolases and an unknown JZL184-sensitive hydrolase of approximately 52 kDa. Altogether, our results indicate that human leukocytes are experts at hydrolyzing 2-AG and its metabolites via multiple lipases and probably via a yet-to-be characterized 52 kDa hydrolase. Blocking 2-AG hydrolysis in humans will likely abrogate the ability of human leukocytes to degrade 2-AG and its metabolites and increase their anti-inflammatory effects in vivo.
Ghrelin is a peptide hormone involved in multiple physiological processes related to energy homeostasis. This hormone features a unique posttranslational serine octanoylation modification catalyzed by the enzyme ghrelin O-acyltransferase, with serine octanoylation essential for ghrelin to bind and activate its cognate receptor. Ghrelin deacylation rapidly occurs in circulation, with both ghrelin and desacyl ghrelin playing important roles in biological signaling. Understanding the regulation and physiological impact of ghrelin signaling requires the ability to rapidly protect ghrelin from deacylation in biological samples such as blood serum or cell lysates to preserve the relative concentrations of ghrelin and desacyl ghrelin. In in vitro ghrelin O-acyltransferase activity assays using insect microsomal protein fractions and mammalian cell lysate and blood serum, we demonstrate that alkyl fluorophosphonate treatment provides rapid, complete, and long-lasting protection of ghrelin acylation against serine ester hydrolysis without interference in enzyme assay or ELISA analysis. Our results support alkyl fluorophosphonate treatment as a general tool for stabilizing ghrelin and improving measurement of ghrelin and desacyl ghrelin concentrations in biochemical and clinical investigations and suggest current estimates for active ghrelin concentration and the ghrelin to desacyl ghrelin ratio in circulation may underestimate in vivo conditions.
Lysosomal phospholipase A2 (LPLA2) and lecithin:cholesterol acyltransferase (LCAT) belong to a structurally uncharacterized family of key lipid-metabolizing enzymes responsible for lung surfactant catabolism and for reverse cholesterol transport, respectively. Whereas LPLA2 is predicted to underlie the development of drug-induced phospholipidosis, somatic mutations in LCAT cause fish eye disease and familial LCAT deficiency. Here we describe several high-resolution crystal structures of human LPLA2 and a low-resolution structure of LCAT that confirms its close structural relationship to LPLA2. Insertions in the alpha/beta hydrolase core of LPLA2 form domains that are responsible for membrane interaction and binding the acyl chains and head groups of phospholipid substrates. The LCAT structure suggests the molecular basis underlying human disease for most of the known LCAT missense mutations, and paves the way for rational development of new therapeutics to treat LCAT deficiency, atherosclerosis and acute coronary syndrome.
        
Title: Association between Pseudomonas aeruginosa type III secretion, antibiotic resistance, and clinical outcome: a review Sawa T, Shimizu M, Moriyama K, Wiener-Kronish JP Ref: Crit Care, 18:668, 2014 : PubMed
Pseudomonas aeruginosa uses a complex type III secretion system to inject the toxins ExoS, ExoT, ExoU, and ExoY into the cytosol of target eukaryotic cells. This system is regulated by the exoenzyme S regulon and includes the transcriptional activator ExsA. Of the four toxins, ExoU is characterized as the major virulence factor responsible for alveolar epithelial injury in patients with P. aeruginosa pneumonia. Virulent strains of P. aeruginosa possess the exoU gene, whereas non-virulent strains lack this particular gene. The mechanism of virulence for the exoU+ genotype relies on the presence of a pathogenic gene cluster (PAPI-2) encoding exoU and its chaperone, spcU. The ExoU toxin has a patatin-like phospholipase domain in its N-terminal, exhibits phospholipase A2 activity, and requires a eukaryotic cell factor for activation. The C-terminal of ExoU has a ubiquitinylation mechanism of activation. This probably induces a structural change in enzymatic active sites required for phospholipase A2 activity. In P. aeruginosa clinical isolates, the exoU+ genotype correlates with a fluoroquinolone resistance phenotype. Additionally, poor clinical outcomes have been observed in patients with pneumonia caused by exoU+-fluoroquinolone-resistant isolates. Therefore, the potential exists to improve clinical outcomes in patients with P. aeruginosa pneumonia by identifying virulent and antimicrobial drug-resistant strains through exoU genotyping or ExoU protein phenotyping or both.
BACKGROUND: H-rev107, also called HRASLS3 or PLA2G16, is a member of the HREV107 type II tumor suppressor gene family. Previous studies showed that H-rev107 exhibits phospholipase A/acyltransferase (PLA/AT) activity and downregulates H-RAS expression. However, the mode of action and the site of inhibition of H-RAS by H-rev107 are still unknown. RESULTS: Our results indicate that H-rev107 was co-precipitated with H-RAS and downregulated the levels of activated RAS (RAS-GTP) and ELK1-mediated transactivation in epidermal growth factor-stimulated and H-RAS-cotransfected HtTA cervical cancer cells. Furthermore, an acyl-biotin exchange assay demonstrated that H-rev107 reduced H-RAS palmitoylation. H-rev107 has been shown to be a PLA/AT that is involved in phospholipid metabolism. Treating cells with the PLA/AT inhibitor arachidonyl trifluoromethyl ketone (AACOCF3) or methyl arachidonyl fluorophosphate (MAFP) alleviated H-rev107-induced downregulation of the levels of acylated H-RAS. AACOCF3 and MAFP also increased activated RAS and ELK1-mediated transactivation in H-rev107-expressing HtTA cells following their treatment with epidermal growth factor. In contrast, treating cells with the acyl-protein thioesterase inhibitor palmostatin B enhanced H-rev107-mediated downregulation of acylated H-RAS in H-rev107-expressing cells. Palmostatin B had no effect on H-rev107-induced suppression of RAS-GTP levels or ELK1-mediated transactivation. These results suggest that H-rev107 decreases H-RAS activity through its PLA/AT activity to modulate H-RAS acylation. CONCLUSIONS: We made the novel observation that H-rev107 decrease in the steady state levels of H-RAS palmitoylation through the phospholipase A/acyltransferase activity. H-rev107 is likely to suppress activation of the RAS signaling pathway by reducing the levels of palmitoylated H-RAS, which decreases the levels of GTP-bound H-RAS and also the activation of downstream molecules. Our study further suggests that the PLA/AT activity of H-rev107 may play an important role in H-rev107-mediated RAS suppression.
        
Title: Inhibition of phospholipase A1, lipase and galactolipase activities of pancreatic lipase-related protein 2 by methyl arachidonyl fluorophosphonate (MAFP) Amara S, Delorme V, Record M, Carriere F Ref: Biochimica & Biophysica Acta, 1821:1379, 2012 : PubMed
Methyl arachidonyl fluorophosphonate (MAFP) is a known inhibitor of cytosolic phospholipase A2 and some other serine enzymes. MAFP was found here to be an irreversible inhibitor of human pancreatic lipase-related protein 2 (HPLRP2), an enzyme displaying lipase, phospholipase A1 and galactolipase activities. In the presence of MAFP, mass spectrometry analysis of HPLRP2 revealed a mass increase of 351Da, suggesting a covalent binding of MAFP to the active site serine residue. When HPLRP2 was pre-incubated with MAFP before measuring residual activity, a direct inhibition of HPLRP2 occurred, confirming that HPLRP2 has an active site freely accessible to solvent and differs from most lipases in solution. HPLRP2 activities on tributyrin (TC4), phosphatidylcholine (PC) and monogalactosyl dioctanoylglycerol (C8-MGDG) were equally inhibited under these conditions. Bile salts were not required to trigger the inhibition, but they significantly increased the rate of HPLRP2 inhibition, probably because of MAFP micellar solubilization. Since HPLRP2 is active on various substrates that self-organize differently in the presence of water, HPLRP2 inhibition by MAFP was tested in the presence of these substrates after adding MAFP in the course of the lipolysis reaction. In this case, the rates of inhibition of lipase, phospholipase A1 and galactolipase activities were not equivalent (triglycerides>PC>MGDG), suggesting different enzyme/inhibitor partitioning between the aqueous phase and lipid aggregates. The inhibition by MAFP of a well identified phospholipase A1 (HPLRP2), present in pancreatic juice and also in human monocytes, indicates that MAFP cannot be used for discriminating phospholipase A2 from A1 activities at the cellular level.
        
Title: High-performance liquid chromatography assay with fluorescence detection for the evaluation of inhibitors against human recombinant monoacylglycerol lipase Holtfrerich A, Makharadze T, Lehr M Ref: Analytical Biochemistry, 399:218, 2010 : PubMed
A fluorescent assay for the evaluation of inhibitors of monoacylglycerol lipase (MAGL) is described. 1,3-Dihydroxypropan-2-yl 4-pyren-1-ylbutanoate was designed and synthesized as novel fluorogenic substrate. Activity of human recombinant MAGL was determined in the presence of the surfactant Triton X-100 without further sample cleanup by measuring the amount of 4-pyren-1-ylbutanoic acid released by the enzyme with reversed-phase high-performance liquid chromatography (HPLC) and fluorescence detection. The known covalent binding MAGL inhibitors methyl arachidonyl fluorophosphonate (MAFP), 4-nitrophenyl 4-[bis(1,3-benzodioxol-5-yl)hydroxymethyl]piperidine-1-carboxylate (JZL184), and [4-(5-methoxy-2-oxo-1,3,4-oxadiazol-3-yl)-2-methylphenyl]carbamic acid benzyl ester (CAY10499) were used to validate the test system. Applying an incubation time of 15 min, the IC(50) values obtained for these compounds were 0.16, 3.7, and 1.1 microM, respectively. A prolongation of the incubation to 45 min results in a two- to threefold decrease of the IC(50) values.
        
Title: Endocannabinoid biosynthesis proceeding through glycerophospho-N-acyl ethanolamine and a role for alpha/beta-hydrolase 4 in this pathway Simon GM, Cravatt BF Ref: Journal of Biological Chemistry, 281:26465, 2006 : PubMed
N-Acyl ethanolamines (NAEs) are a large class of signaling lipids implicated in diverse physiological processes, including nociception, cognition, anxiety, appetite, and inflammation. It has been proposed that NAEs are biosynthesized from their corresponding N-acyl phosphatidylethanolamines (NAPEs) in a single enzymatic step catalyzed by a phospholipase D (NAPE-PLD). The recent generation of NAPE-PLD(-/-) mice has revealed that these animals possess lower brain levels of saturated NAEs but essentially unchanged concentrations of polyunsaturated NAEs, including the endogenous cannabinoid anandamide. These findings suggest the existence of additional enzymatic routes for the production of NAEs in vivo. Here, we report evidence for an alternative pathway for NAE biosynthesis that proceeds through the serine hydrolase-catalyzed double-deacylation of NAPE to generate glycerophospho-NAE, followed by the phosphodiesterase-mediated cleavage of this intermediate to liberate NAE. Furthermore, we describe the functional proteomic isolation and identification of a heretofore uncharacterized enzyme alpha/beta-hydrolase 4 (Abh4) as a lysophospholipase/phospholipase B that selectively hydrolyzes NAPEs and lysoNAPEs. Abh4 accepts lysoNAPEs bearing both saturated and polyunsaturated N-acyl chains as substrates and displays a distribution that closely mirrors lysoNAPE-lipase activity in mouse tissues. These results support the existence of an NAPE-PLD-independent route for NAE biosynthesis and suggest that Abh4 plays a role in this metabolic pathway by acting as a (lyso)NAPE-selective lipase.
Methylarachidonylfluorophosphonate (MAFP) and related analogs have been shown to inhibit fatty acid amidohydrolase activity (FAAH), the enzyme responsible for hydrolysis of the endogenous cannabinoid ligand anandamide. To fully characterize this class of compounds, methylfluorophosphonate compounds with saturated alkyl chains ranging from C8 to C20 along with C20 unsaturated derivatives were synthesized and evaluated for their ability to interact with the CB1 receptor, inhibit FAAH, and produce in vivo pharmacological effects. These analogs demonstrated widely varying affinities for the CB1 receptor. Of the saturated compounds, C8:0 was incapable of displacing [(3)H]CP 55,940 binding, whereas C12:0 exhibited high affinity (2.5 nM). The C20:0 saturated analog had low affinity (900 nM), but the introduction of unsaturation into the C20 analogs restored receptor affinity. However, none of the analogs were capable of fully displacing [(3)H]CP 55,940 binding. On the other hand, all compounds were able to completely inhibit FAAH enzyme activity, with the C20:0 analog being the least potent. The most potent FAAH inhibitor was the short-chained saturated C12:0, whereas the other analogs were 15- to 30-fold less potent. In vivo, the C8:0 and C12:0 analogs were highly potent and fully efficacious in producing tetrahydrocannabinol (THC)-like effects, whereas the other analogs were either inactive or acted as partial agonists. None was capable of attenuating the agonist effects of THC. Conversely, the C20:0 analog potentiated the effects of anandamide but not those of 2-arachidonoyl-glycerol and THC. The high in vivo potency of the novel short-chain saturated MAFP derivatives (C8:0 and C12:0) underscores the complexity of manipulating the endogenous cannabinoid system.