Post-translational S-palmitoylation directs the trafficking and membrane localization of hundreds of cellular proteins, often involving a coordinated palmitoylation cycle that requires both protein acyl transferases (PATs) and acyl protein thioesterases (APTs) to actively redistribute S-palmitoylated proteins toward different cellular membrane compartments. This process is necessary for the trafficking and oncogenic signaling of S-palmitoylated Ras isoforms, and potentially many peripheral membrane proteins. The depalmitoylating enzymes APT1 and APT2 are separately conserved in all vertebrates, suggesting unique functional roles for each enzyme. The recent discovery of the APT isoform-selective inhibitors ML348 and ML349 has opened new possibilities to probe the function of each enzyme, yet it remains unclear how each inhibitor achieves orthogonal inhibition. Herein, we report the high-resolution structure of human APT2 in complex with ML349 (1.64 A), as well as the complementary structure of human APT1 bound to ML348 (1.55 A). Although the overall peptide backbone structures are nearly identical, each inhibitor adopts a distinct conformation within each active site. In APT1, the trifluoromethyl group of ML348 is positioned above the catalytic triad, but in APT2, the sulfonyl group of ML349 forms hydrogen bonds with active site resident waters to indirectly engage the catalytic triad and oxyanion hole. Reciprocal mutagenesis and activity profiling revealed several differing residues surrounding the active site that serve as critical gatekeepers for isoform accessibility and dynamics. Structural and biochemical analysis suggests the inhibitors occupy a putative acyl-binding region, establishing the mechanism for isoform-specific inhibition, hydrolysis of acyl substrates, and structural orthogonality important for future probe development.
Protein palmitoylation is an essential post-translational modification necessary for trafficking and localization of regulatory proteins that play key roles in cell growth and signaling. Multiple oncogenes, including HRAS and SRC, require palmitoylation for malignant transformation. Lysophospholipase 1 (LYPLA1) has been identified as a candidate protein palmitoyl thioesterase responsible for HRAS depalmitoylation in mammalian cells. Seeking chemical tools to investigate biochemical pathway involvement and potential roles in cancer pathogenesis, we conducted a fluorescence polarization-based competitive activity-based protein profiling (fluopol-ABPP) HTS campaign to identify inhibitors of LYPLA1 and the structurally related LYPLA2. HTS identified a lead triazole urea micromolar inhibitor, which we optimized as dual LYPLA1/LYPLA2 inhibitor ML211, and reversible compounds ML348 and ML349 that act as selective LYPLA1 and LYPLA2 inhibitors, respectively. Using an advanced competitive ABPP strategy employing ABPP probes with controlled reactivity rates, we successfully confirmed potent and selective target engagement of these reversible compounds in living systems as detailed here for ML348 and in the accompanying ML349 Probe Report. Together, these compounds should greatly aid investigations into the biological function of LYPLA1 and LYPLA2
The development of small-molecule inhibitors for perturbing enzyme function requires assays to confirm that the inhibitors interact with their enzymatic targets in vivo. Determining target engagement in vivo can be particularly challenging for poorly characterized enzymes that lack known biomarkers (e.g., endogenous substrates and products) to report on their inhibition. Here, we describe a competitive activity-based protein profiling (ABPP) method for measuring the binding of reversible inhibitors to enzymes in animal models. Key to the success of this approach is the use of activity-based probes that show tempered rates of reactivity with enzymes, such that competition for target engagement with reversible inhibitors can be measured in vivo. We apply the competitive ABPP strategy to evaluate a newly described class of piperazine amide reversible inhibitors for the serine hydrolases LYPLA1 and LYPLA2, two enzymes for which selective, in vivo active inhibitors are lacking. Competitive ABPP identified individual piperazine amides that selectively inhibit LYPLA1 or LYPLA2 in mice. In summary, competitive ABPP adapted to operate with moderately reactive probes can assess the target engagement of reversible inhibitors in animal models to facilitate the discovery of small-molecule probes for characterizing enzyme function in vivo.
Huntington disease (HD) damages the corticostriatal circuitry in large part by impairing transport of brain-derived neurotrophic factor (BDNF). We hypothesized that improving vesicular transport of BDNF could slow or prevent disease progression. We therefore performed selective proteomic analysis of vesicles transported within corticostriatal projecting neurons followed by in silico screening and identified palmitoylation as a pathway that could restore defective huntingtin-dependent trafficking. Using a synchronized trafficking assay and an HD network-on-a-chip, we found that increasing brain palmitoylation via ML348, which inhibits the palmitate-removing enzyme acyl-protein thioesterase 1 (APT1), restores axonal transport, synapse homeostasis, and survival signaling to wild-type levels without toxicity. In human HD induced pluripotent stem cell-derived cortical neurons, ML348 increased BDNF trafficking. In HD knock-in mice, it efficiently crossed the blood-brain barrier to restore palmitoylation levels and reverse neuropathology, locomotor deficits, and anxio-depressive behaviors. APT1 and its inhibitor ML348 thus hold therapeutic interest for HD.
Oncogenic NRAS mutations are frequent in melanoma and lead to increased downstream signaling and uncontrolled cell proliferation. Since the direct inhibition of NRAS is not possible yet, modulators of NRAS posttranslational modifications have become an area of interest. Specifically, interfering with NRAS posttranslational palmitoylation/depalmitoylation cycle could disturb proper NRAS localization, and therefore decrease cell proliferation and downstream signaling. Here, we investigate the expression and function of NRAS depalmitoylating acyl protein thioesterases 1 and 2 (APT-1, APT-2) in a panel of NRAS mutant melanoma cells. First, we show that all melanoma cell lines examined express APT-1 and APT-2. Next, we show that siRNA mediated APT-1 and APT-2 knock down and that the specific APT-1 and -2 inhibitors ML348 and ML349 have no biologically significant effects in NRAS mutant melanoma cells. Finally, we test the dual APT-1 and APT-2 inhibitor palmostatin B and conclude that palmostatin B has effects on NRAS downstream signaling and cell viability in NRAS mutant melanoma cells, offering an interesting starting point for future studies.
Post-translational S-palmitoylation directs the trafficking and membrane localization of hundreds of cellular proteins, often involving a coordinated palmitoylation cycle that requires both protein acyl transferases (PATs) and acyl protein thioesterases (APTs) to actively redistribute S-palmitoylated proteins toward different cellular membrane compartments. This process is necessary for the trafficking and oncogenic signaling of S-palmitoylated Ras isoforms, and potentially many peripheral membrane proteins. The depalmitoylating enzymes APT1 and APT2 are separately conserved in all vertebrates, suggesting unique functional roles for each enzyme. The recent discovery of the APT isoform-selective inhibitors ML348 and ML349 has opened new possibilities to probe the function of each enzyme, yet it remains unclear how each inhibitor achieves orthogonal inhibition. Herein, we report the high-resolution structure of human APT2 in complex with ML349 (1.64 A), as well as the complementary structure of human APT1 bound to ML348 (1.55 A). Although the overall peptide backbone structures are nearly identical, each inhibitor adopts a distinct conformation within each active site. In APT1, the trifluoromethyl group of ML348 is positioned above the catalytic triad, but in APT2, the sulfonyl group of ML349 forms hydrogen bonds with active site resident waters to indirectly engage the catalytic triad and oxyanion hole. Reciprocal mutagenesis and activity profiling revealed several differing residues surrounding the active site that serve as critical gatekeepers for isoform accessibility and dynamics. Structural and biochemical analysis suggests the inhibitors occupy a putative acyl-binding region, establishing the mechanism for isoform-specific inhibition, hydrolysis of acyl substrates, and structural orthogonality important for future probe development.
        
Title: Acyl protein thioesterase inhibitors as probes of dynamic S-palmitoylation Davda D, Martin BR Ref: Medchemcomm, 5:268, 2014 : PubMed
Protein palmitoylation describes the hydrophobic post-translational modification of cysteine residues in certain proteins, and is required for the spatial organization and composition of cellular membrane environments. Certain palmitoylated proteins are processed by acyl protein thioesterase (APT) enzymes, which catalyze thioester hydrolysis of palmitoylated cysteine residues. Inhibiting APT enzymes disrupts Ras trafficking and attenuates oncogenic growth signaling, highlighting these enzymes as potential therapeutic targets. As members of the serine hydrolase enzyme family, APT enzymes can be assayed by fluorophosphonate activity-based protein profiling (ABPP) methods, allowing rapid profiling of inhibitor selectivity and potency. In this review, we discuss recent progress in the development of potent and selective inhibitors to APT enzymes, including both competitive and non-competitive chemotypes. These examples highlight how ABPP methods integrate with medicinal chemistry for the discovery and optimization of inhibitors in complex proteomes.
Protein palmitoylation is an essential post-translational modification necessary for trafficking and localization of regulatory proteins that play key roles in cell growth and signaling. Multiple oncogenes, including HRAS and SRC, require palmitoylation for malignant transformation. Lysophospholipase 1 (LYPLA1) has been identified as a candidate protein palmitoyl thioesterase responsible for HRAS depalmitoylation in mammalian cells. Seeking chemical tools to investigate biochemical pathway involvement and potential roles in cancer pathogenesis, we conducted a fluorescence polarization-based competitive activity-based protein profiling (fluopol-ABPP) HTS campaign to identify inhibitors of LYPLA1 and the structurally related LYPLA2. HTS identified a lead triazole urea micromolar inhibitor, which we optimized as dual LYPLA1/LYPLA2 inhibitor ML211, and reversible compounds ML348 and ML349 that act as selective LYPLA1 and LYPLA2 inhibitors, respectively. Using an advanced competitive ABPP strategy employing ABPP probes with controlled reactivity rates, we successfully confirmed potent and selective target engagement of these reversible compounds in living systems as detailed here for ML348 and in the accompanying ML349 Probe Report. Together, these compounds should greatly aid investigations into the biological function of LYPLA1 and LYPLA2
The development of small-molecule inhibitors for perturbing enzyme function requires assays to confirm that the inhibitors interact with their enzymatic targets in vivo. Determining target engagement in vivo can be particularly challenging for poorly characterized enzymes that lack known biomarkers (e.g., endogenous substrates and products) to report on their inhibition. Here, we describe a competitive activity-based protein profiling (ABPP) method for measuring the binding of reversible inhibitors to enzymes in animal models. Key to the success of this approach is the use of activity-based probes that show tempered rates of reactivity with enzymes, such that competition for target engagement with reversible inhibitors can be measured in vivo. We apply the competitive ABPP strategy to evaluate a newly described class of piperazine amide reversible inhibitors for the serine hydrolases LYPLA1 and LYPLA2, two enzymes for which selective, in vivo active inhibitors are lacking. Competitive ABPP identified individual piperazine amides that selectively inhibit LYPLA1 or LYPLA2 in mice. In summary, competitive ABPP adapted to operate with moderately reactive probes can assess the target engagement of reversible inhibitors in animal models to facilitate the discovery of small-molecule probes for characterizing enzyme function in vivo.