Ferroptosis is a type of cell death caused by the pathogenic accumulation of lipid hydroperoxides. Pharmacological mechanisms to induce ferroptosis may provide a way to kill cancer cells that are resistant to other forms of cell death like apoptosis. Nonetheless, the proteins that regulate ferroptotic sensitivity in cancer cells remain incompletely understood. Here, we screened a panel of inhibitors of serine hydrolases-an enzyme class important for regulating lipid metabolism-for potentiation of ferroptosis in HT1080 fibrosarcoma cells. We found that DO264, a selective inhibitor of the lyso- and ox-phosphatidylserine (PS) lipase ABHD12, enhances ferroptotic death caused by RSL3, an inhibitor of the lipid peroxidase GPX4. RSL3-induced ferroptosis was also potentiated by genetic disruption of ABHD12. Metabolomic experiments revealed that, in addition to elevated lyso-PS, ABHD12-inactivated cells show higher quantities of arachidonate (C20:4)-containing PS and 2-arachidonoyl glycerol, pointing to potential oxidation-sensitive lipid mediators of ferroptosis regulated by ABHD12.
        
Title: Discovery and Optimization of Selective and in Vivo Active Inhibitors of the Lysophosphatidylserine Lipase alpha/beta-Hydrolase Domain-Containing 12 (ABHD12) Ogasawara D, Ichu TA, Jing H, Hulce JJ, Reed A, Ulanovskaya OA, Cravatt BF Ref: Journal of Medicinal Chemistry, 62:1643, 2019 : PubMed
ABHD12 is a membrane-bound hydrolytic enzyme that acts on the lysophosphatidylserine (lyso-PS) and lysophosphatidylinositol (lyso-PI) classes of immunomodulatory lipids. Human and mouse genetic studies point to a key role for the ABHD12-(lyso)-PS/PI pathway in regulating (neuro)immunological functions in both the central nervous system and periphery. Selective inhibitors of ABHD12 would offer valuable pharmacological probes to complement genetic models of ABHD12-regulated (lyso)-PS/PI metabolism and signaling. Here, we provide a detailed description of the discovery and activity-based protein profiling (ABPP) guided optimization of reversible thiourea inhibitors of ABHD12 that culminated in the identification of DO264 as a potent, selective, and in vivo active ABHD12 inhibitor. We also show that DO264, but not a structurally related inactive control probe (S)-DO271, augments inflammatory cytokine production from human THP-1 macrophage cells. The in vitro and in vivo properties of DO264 designate this compound as a suitable chemical probe for studying the biological functions of ABHD12-(lyso)-PS/PI pathways.
ABHD12 metabolizes bioactive lysophospholipids, including lysophosphatidylserine (lyso-PS). Deleterious mutations in human ABHD12 cause the neurological disease PHARC, and ABHD12(-/-) mice display PHARC-like phenotypes, including hearing loss, along with elevated brain lyso-PS and features of stimulated innate immune cell function. Here, we develop a selective and in vivo-active inhibitor of ABHD12 termed DO264 and show that this compound elevates lyso-PS in mouse brain and primary human macrophages. Unlike ABHD12(-/-) mice, adult mice treated with DO264 exhibited minimal perturbations in auditory function. On the other hand, both DO264-treated and ABHD12(-/-) mice displayed heightened immunological responses to lymphocytic choriomeningitis virus (LCMV) clone 13 infection that manifested as severe lung pathology with elevated proinflammatory chemokines. These results reveal similarities and differences in the phenotypic impact of pharmacological versus genetic blockade of ABHD12 and point to a key role for this enzyme in regulating immunostimulatory lipid pathways in vivo.
Mutations in alpha/beta-hydrolase domain containing (ABHD) 12 gene, which encodes lysophosphatidylserine (LysoPS) lipase, cause the neurodegenerative disease PHARC (Polyneuropathy, Hearing loss, Ataxia, Retinitis pigmentosa, Cataract). Since ABHD12 is expressed by microglia in the central nervous system and is localized to the endoplasmic reticulum, accumulation of intracellular LysoPS by ABHD12 mutations is assumed to be one of the pathological mechanisms associated with microglial activation in PHARC. However, the role of microglia in the PHARC brain and the relationship between microglial function and cellular LysoPS content remains unclear. Therefore, we explored the influence of cellular LysoPS content in microglial inflammatory responses. We evaluated the effects of inhibitors of cellular LysoPS metabolism, KC01 and DO-264, on inflammatory responses using a lipopolysaccharide (LPS)-stimulated mouse microglial cell line, BV-2 and primary microglia. Treatment of DO-264, an inhibitor of cellular LysoPS degradation, enhanced LPS-induced phagocytosis concomitant with the increase in cellular LysoPS content in BV-2 cells. On the other hand, treatment with KC01, an agent had been developed as an inhibitor of LysoPS synthase, reduced phagocytosis without affecting cellular LysoPS content. Such effects of both inhibitors on phagocytosis were also confirmed using primary microglia. KC01 treatment decreased nitric oxide (NO) production, accompanied by a reduction in inducible NO synthase expression in BV-2 microglia. KC01 also suppressed LPS-induced generation of intracellular reactive oxygen species and cytokines such as interleukin-6. Our results suggest that increase in cellular LysoPS levels can exacerbate microglial inflammatory responses. Treatment to prevent the increase in cellular LysoPS in microglia may have therapeutic potential for PHARC.
        
Title: Blockade of the Lysophosphatidylserine Lipase ABHD12 Potentiates Ferroptosis in Cancer Cells Kathman SG, Boshart J, Jing H, Cravatt BF Ref: ACS Chemical Biology, 15:871, 2020 : PubMed
Ferroptosis is a type of cell death caused by the pathogenic accumulation of lipid hydroperoxides. Pharmacological mechanisms to induce ferroptosis may provide a way to kill cancer cells that are resistant to other forms of cell death like apoptosis. Nonetheless, the proteins that regulate ferroptotic sensitivity in cancer cells remain incompletely understood. Here, we screened a panel of inhibitors of serine hydrolases-an enzyme class important for regulating lipid metabolism-for potentiation of ferroptosis in HT1080 fibrosarcoma cells. We found that DO264, a selective inhibitor of the lyso- and ox-phosphatidylserine (PS) lipase ABHD12, enhances ferroptotic death caused by RSL3, an inhibitor of the lipid peroxidase GPX4. RSL3-induced ferroptosis was also potentiated by genetic disruption of ABHD12. Metabolomic experiments revealed that, in addition to elevated lyso-PS, ABHD12-inactivated cells show higher quantities of arachidonate (C20:4)-containing PS and 2-arachidonoyl glycerol, pointing to potential oxidation-sensitive lipid mediators of ferroptosis regulated by ABHD12.
        
Title: Discovery and Optimization of Selective and in Vivo Active Inhibitors of the Lysophosphatidylserine Lipase alpha/beta-Hydrolase Domain-Containing 12 (ABHD12) Ogasawara D, Ichu TA, Jing H, Hulce JJ, Reed A, Ulanovskaya OA, Cravatt BF Ref: Journal of Medicinal Chemistry, 62:1643, 2019 : PubMed
ABHD12 is a membrane-bound hydrolytic enzyme that acts on the lysophosphatidylserine (lyso-PS) and lysophosphatidylinositol (lyso-PI) classes of immunomodulatory lipids. Human and mouse genetic studies point to a key role for the ABHD12-(lyso)-PS/PI pathway in regulating (neuro)immunological functions in both the central nervous system and periphery. Selective inhibitors of ABHD12 would offer valuable pharmacological probes to complement genetic models of ABHD12-regulated (lyso)-PS/PI metabolism and signaling. Here, we provide a detailed description of the discovery and activity-based protein profiling (ABPP) guided optimization of reversible thiourea inhibitors of ABHD12 that culminated in the identification of DO264 as a potent, selective, and in vivo active ABHD12 inhibitor. We also show that DO264, but not a structurally related inactive control probe (S)-DO271, augments inflammatory cytokine production from human THP-1 macrophage cells. The in vitro and in vivo properties of DO264 designate this compound as a suitable chemical probe for studying the biological functions of ABHD12-(lyso)-PS/PI pathways.
ABHD12 metabolizes bioactive lysophospholipids, including lysophosphatidylserine (lyso-PS). Deleterious mutations in human ABHD12 cause the neurological disease PHARC, and ABHD12(-/-) mice display PHARC-like phenotypes, including hearing loss, along with elevated brain lyso-PS and features of stimulated innate immune cell function. Here, we develop a selective and in vivo-active inhibitor of ABHD12 termed DO264 and show that this compound elevates lyso-PS in mouse brain and primary human macrophages. Unlike ABHD12(-/-) mice, adult mice treated with DO264 exhibited minimal perturbations in auditory function. On the other hand, both DO264-treated and ABHD12(-/-) mice displayed heightened immunological responses to lymphocytic choriomeningitis virus (LCMV) clone 13 infection that manifested as severe lung pathology with elevated proinflammatory chemokines. These results reveal similarities and differences in the phenotypic impact of pharmacological versus genetic blockade of ABHD12 and point to a key role for this enzyme in regulating immunostimulatory lipid pathways in vivo.