Neuromuscular Nondepolarizing Agent, Nicotinic Antagonist, Neuromuscular blocking agent, (close to doxacurium) Cisatracurium is the 1R-cis 1'R-cis isomer of atracurium. Atracurium and Cisatracurium undergo spontaneous non-organ-dependent Hofmann degradation at physiological pH and temperature
The pharmacokinetics of 6 new neuromuscular blocking drugs are described. These are the aminosteroids pipecuronium bromide, rocuronium bromide and rapacuronium bromide (ORG-9487) and the benzylisoquinolinium diesters doxacurium chloride, mivacurium chloride and cisatracurium besilate. In healthy individuals, these drugs all have similar volumes of distribution. Their pharmacokinetics are influenced little by age or anaesthetic technique, but renal and hepatic disease may significantly alter their distribution and elimination. Pipecuronium resembles pancuronium in its pharmacokinetic and neuromuscular blocking profile, but is devoid of cardiovascular effects. It has a low clearance (0.16 L/h/kg) and long elimination half-life (120 minutes). It is largely eliminated through the kidney. Rocuronium has a similar pharmacokinetic profile to vecuronium but its onset of action is more rapid and duration of action slightly shorter. Its clearance (0.27 L/h/kg) is intermediate between those of pipecuronium and rapacuronium, but its elimination half-life is long (83 minutes). The pharmacokinetics of rocuronium are altered by renal and hepatic disease; the latter probably has the more significant effect. Rapacuronium has a rapid onset, and a bolus dose has a short duration of action. It has a high clearance (0.59 L/h/kg) but a long elimination half-life (112 minutes). Doxacurium has a pharmacokinetic and pharmacodynamic profile similar to pipecuronium. It has a high potency and is devoid of cardiovascular effects. In adults, it has a low clearance (0.15 L/h/kg) and long elimination half-life (87 minutes). Mivacurium is a mixture of 3 stereoisomers. It has a short to intermediate duration of action. It is hydrolysed by plasma cholinesterase. Inherited or acquired alterations in plasma cholinesterase activity are associated with changes in the pharmacokinetics and time course of action of mivacurium. The 2 active isomers (cis-trans and trans-trans) have a high clearance (4.74 L/h/kg) and very short elimination half-lives (approximately 2 minutes). Cisatracurium is the 1R-cis 1'R-cis isomer of atracurium. It has similar pharmacokinetics and pharmacodynamics to atracurium. It is mainly broken down by Hofmann (non-enzymatic) degradation. Cisatracurium has an intermediate clearance (0.3 L/h/kg) and short elimination half-life (26 minutes). Hepatic and renal disease have little effect on its pharmacokinetics.
Mivacurium is a short-acting, nondepolarising muscle relaxant of the benzylisoquinoline type that undergoes rapid breakdown by plasma cholinesterase. After 2.5 times the ED95 (0.2 mg/kg), tracheal intubation can be accomplished within 2-3 min following injection. The ensuing DUR 25% (i.e., time from injection to 25% recovery of control twitch tension) is three times as long as with succinylcholine. The principal side effects of mivacurium are facial flushing and a transient fall in blood pressure due to moderate histamine release following doses 3-4 times the ED95. In patients with end-stage liver or renal disease as well as those with atypical plasma cholinesterase, the duration of action of mivacurium is prolonged.
This review discusses concepts of isomers, stereoisomers, chirality, and enantiomers as applied to drugs used in anaesthesia. The inhalational anaesthetics enflurane and isoflurane are examples of stereoisomers. A chiral centre is formed when a carbon or quaternary nitrogen atom is connected to four different atoms. A molecule with one chiral centre is then present in one of two possible configurations termed enantiomers. A racemate is a mixture of both enantiomers in equal proportions. Many of the drugs used in anaesthesia are racemic mixtures (the inhalation anaesthetics, local anaesthetics, ketamine, and others). The shape of the atracurium molecule is comparable to that of a dumb-bell:the two isoquinoline groups representing the two bulky ends connected by an aliphatic chain. In each isoquinoline group there are two chiral centres, one formed by a carbon and the other by a quaternary nitrogen atom. From a geometric point of view, the connections from the carbon atom to a substituted benzene ring and from the quaternary nitrogen to the aliphatic chain may point in the same direction (cis configuration) or in opposite directions (trans configuration). The two isoquinoline groups in atracurium are paired in three geometric configurations: cis-cis, trans-trans, or cis-trans. However, the two chiral centres allow each isoquinoline group to exist in one of four stereoisometric configurations. In the symmetrical atracurium molecule, the number of possible stereoisomers is limited to ten. Among these, 1 R-cis, 1'R-cis atracurium was isolated and its pharmacologic properties studied. This isomer, named cis-atracurium, offers clinical advantages over the atracurium mixture, principally due to the lack of histamine-releasing propensity and the higher neuromuscular blocking potency. The ester groups appear in one of two steric configurations true and reverse esters. In the true esters, oxygen is positioned between the nitrogen atom and the carbonyl group, while in the reverse esters in its positioned on the other side of the carbonyl group. True esters, suxamethonium and mivacurium, are hydrolysed by the enzyme plasma cholinesterase (butyrylcholinesterase), albeit at different rates. The more rapid degradation of suxamethonium is responsible for its fast onset and short duration of action in comparison with mivacurium. The reverse esters, atracurium, cisatracurium, and remifentanil, are hydrolysed by nonspecific esterases in plasma (carboxyesterases). Remifentanil is hydrolysed rapidly; the degradation leads to its inactivation and short duration of action. Cis-atracurium is preferentially degraded and inactivated by a process known as Hofmann elimination. In a second step, one of the degradation products, the monoester acrylate, is hydrolysed by a nonspecific esterase.