Product of hydrolysis by Faec and inhibitor of some a/b hydrolases. Caffeic Acid is an orally bioavailable, hydroxycinnamic acid derivative and polyphenol, A member of catechols, with potential anti-oxidant, anti-inflammatory, and antineoplastic activities. It has a role as a plant metabolite, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 1.13.11.34 (arachidonate 5-lipoxygenase) inhibitor, an antioxidant and an EC 3.5.1.98 (histone deacetylase) inhibitor.
Search PubMed for references concerning: Caffeic-acid
Title: Modulatory effect of caffeic acid on cholinesterases inhibitory properties of donepezil Agunloye OM, Oboh G Ref: J Complement Integr Med, 15:, 2017 : PubMed
Background Donepezil hydrochloride commonly used in the management of Alzheimer's disease (AD), exhibiting its inhibitory effects on acetylcholinesterase and butyrylcholinesterase activity thereby enhance cognitive function. Caffeic acid member of hydroxycinnamic acid is widely present in human diet. This study aims to investigate influence of caffeic acid on acetylcholinesterase and butyrylcholinesterase inhibitory properties of donepezil (in vitro). Methods 5mg of donepezil was dissolved in 50mL distilled water while 10mg of caffeic acid was dissolved in 100mL distilled water. Therefore, mixtures of samples were prepared as follows: A2=donepezil 0.075mg/mL+caffeic acid 0.025mg/mL; A3=donepezil 0.050mg/mL+caffeic acid 0.050mg/mL; A4=donepezil 0.025mg/mL+caffeic acid 0.075mg/mL. All samples were kept in the refrigerator at 4 degrees C for subsequent analysis. Results The result showed that all the combinations show an inhibitory effect on acetylcholinesterase and butyrylcholinesterase activity in vitro, with the combination A4=donepezil 0.025mg/mL+caffeic acid 0.075mg/mL had significant (p<0.05) highest inhibitory effect on acetylcholinesterase and butyrylcholinesterase activity in vitro. More so, all the samples were able to prevent pro-oxidants (FeSO4 and sodium nitroprusside [SNP] ) induced lipid peroxidation in rat brain homogenate, with the combination A4=donepezil 0.025mg/mL+caffeic acid 0.075mg/mL and A3=donepezil 0.050mg/mL+caffeic acid 0.050mg/mL had highest inhibitory effect against FeSO4 and SNP induced lipid peroxidation in rat brain homogenate in vitro respectively. Moreover, all the samples exhibit antioxidant properties as typified by their ability to chelate iron (II) ion (Fe2+), hydroxyl radical (OH) radical scavenging ability and ferric reducing property (FRAP). Conclusions Therefore, the combination of caffeic acid with donepezil enhances the antioxidant properties of donepezil. The combination of caffeic acid with donepezil could be a therapeutic aid in the management of AD, possibly with fewer side effects of donepezil. Nevertheless, the combination donepezil 0.025mg/mL+caffeic acid 0.075mg/mL acid look promising.
BACKGROUND: Microbial enzymes produced in the gastrointestinal tract are primarily responsible for the release and biochemical transformation of absorbable bioactive monophenols. In the present work we described the crystal structure of LJ0536, a serine cinnamoyl esterase produced by the probiotic bacterium Lactobacillus johnsonii N6.2. METHODOLOGY/PRINCIPAL FINDINGS: We crystallized LJ0536 in the apo form and in three substrate-bound complexes. The structure showed a canonical alpha/beta fold characteristic of esterases, and the enzyme is dimeric. Two classical serine esterase motifs (GlyXSerXGly) can be recognized from the amino acid sequence, and the structure revealed that the catalytic triad of the enzyme is formed by Ser(106), His(225), and Asp(197), while the other motif is non-functional. In all substrate-bound complexes, the aromatic acyl group of the ester compound was bound in the deepest part of the catalytic pocket. The binding pocket also contained an unoccupied area that could accommodate larger ligands. The structure revealed a prominent inserted alpha/beta subdomain of 54 amino acids, from which multiple contacts to the aromatic acyl groups of the substrates are made. Inserts of this size are seen in other esterases, but the secondary structure topology of this subdomain of LJ0536 is unique to this enzyme and its closest homolog (Est1E) in the Protein Databank. CONCLUSIONS: The binding mechanism characterized (involving the inserted alpha/beta subdomain) clearly differentiates LJ0536 from enzymes with similar activity of a fungal origin. The structural features herein described together with the activity profile of LJ0536 suggest that this enzyme should be clustered in a new group of bacterial cinnamoyl esterases.