Product of hydolysis of HODA-6-phenyl (phenyl-HODA) by Carbon-carbon_bond_hydrolase psefl-cumD. Product of hydolysis of 4-(4-nitrophenoxy)carbonylbenzoic acid (MpNPT) by idesa-mheth
9 structures(e.g. : 6QGB, 6QZ1, 4F5Z... more)(less)6QGB: Structure of a plastic degrading enzyme MHETase from Ideonella sakaiensis in complex with Benzoic-acid, 6QZ1: Structure of a plastic degrading enzyme MHETase from Ideonella sakaiensis, 4F5Z: Crystal structure of Rhodococcus rhodochrous haloalkane dehalogenase mutant (L95V, A172V), 7F65: Bacterial Cocaine Esterase with mutations T172R/G173Q/V116K/S117A/A51L, bound to benzoic acid, 1A8U: Streptomyces aureofaciens Chloroperoxidase T + Benzoate, 1GXS: Crystal Structure of Hydroxynitrile Lyase from Sorghum bicolor in Complex with Inhibitor Benzoic Acid: a novel cyanogenic enzyme, 1JU4: Bacterial (Rhodococcus sp.) Cocaine Esterase Complex With Product, 1L7Q: Ser117Ala Mutant of Bacterial Cocaine Esterase cocE, 1UKB: Crystal structure of a meta-cleavage product hydrolase (CumD) complexed with benzoate
The crystal structure of the hydroxynitrile lyase from Sorghum bicolor (SbHNL) in complex with the inhibitor benzoic acid has been determined at 2.3 A resolution and refined to a crystallographic R-factor of 16.5%. The SbHNL sequence places the enzyme in the alpha/beta hydrolase family where the active site nucleophile is predicted to be organized in a characteristic pentapeptide motif which is part of the active site strand-turn-helix motif. In SbHNL, however, a unique two-amino acid deletion is next to the putative active site Ser158, removing thereby the putative oxyanion hole-forming Tyr residue. The presented X-ray structure shows that the overall folding pattern of SbHNL is similar to that of the closely related wheat serine carboxypeptidase (CPD-WII); however, the deletion in SbHNL is forcing the putative active site residues away from the expected hydrolase binding site toward a small hydrophobic cleft, which also contains the inhibitor benzoic acid, defining thereby a completely different SbHNL active site architecture where the traditional view of a classic triad is not given any more. Rather, we propose a mechanism involving general base catalysis by the carboxy-terminal Trp270 carboxyl group and proton transfer toward the leaving nitrile group by an active site water molecule. The unexpected interactions of the inhibitor with the new SbHNL active site also reveal the structural basis for the enzyme's limited substrate specificity. The implications of this structure on the evolution of catalysis in the hydroxynitrile lyase superfamily are discussed.
The structures of cofactor-free haloperoxidases from Streptomyces aureofaciens, Streptomyces lividans, and Pseudomonas fluorescens have been determined at resolutions between 1.9 A and 1.5 A. The structures of two enzymes complexed with benzoate or propionate identify the binding site for the organic acids which are required for the haloperoxidase activity. Based on these complexes and on the structure of an inactive variant, a reaction mechanism is proposed for the halogenation reaction with peroxoacid and hypohalous acid as reaction intermediates. Comparison of the structures suggests that a specific halide binding site is absent in the enzymes but that hydrophobic organic compounds may fit into the active site pocket for halogenation at preferential sites.
Benzoylecgonine (BZE) is the major toxic metabolite of cocaine, and is responsible for the long-term cocaine-induced toxicity due to its long residence time in humans. BZE is also the main contaminant following cocaine consumption, representing a risk to our environment and non-target organisms. Here, we identified the bacterial cocaine esterase (CocE) as a BZE-metabolizing enzyme (BZEase), which can degrade BZE into biological inactive metabolites (ecgonine and benzoic acid). CocE was redesigned by a reactant-state-based enzyme design theory. An encouraging mutant denoted as BZEase2, presented a >400-fold improved catalytic efficiency against BZE compared with wild-type (WT) CocE. In vivo , a single dose of BZEase2 (1 mg/kg, IV) could eliminate nearly all BZE within only two minutes, suggesting the enzyme have the potential for cocaine overdose treatment and BZE elimination in the environment by accelerating BZE clearance. The crystal structure of a designed BZEase was determined, providing additional insights in support of our simulation results.
Mutations targeting as few as four residues lining the access tunnel extended the half-life of an enzyme in 40% dimethyl sulfoxide from minutes to weeks and increased its melting temperature by 190C. Protein crystallography and molecular dynamics revealed that the tunnel residue packing is a key determinant of protein stability and the active-site accessibility for cosolvent molecules (red dots).
        
Title: A series of crystal structures of a meta-cleavage product hydrolase from Pseudomonas fluorescens IP01 (CumD) complexed with various cleavage products Fushinobu S, Jun SY, Hidaka M, Nojiri H, Yamane H, Shoun H, Omori T, Wakagi T Ref: Biosci Biotechnol Biochem, 69:491, 2005 : PubMed
Meta-cleavage product hydrolase (MCP-hydrolase) is one of the key enzymes in the microbial degradation of aromatic compounds. MCP-hydrolase produces 2-hydroxypenta-2,4-dienoate and various organic acids, according to the C6 substituent of the substrate. Comprehensive analysis of the substrate specificity of the MCP-hydrolase from Pseudomonas fluorescens IP01 (CumD) was carried out by determining the kinetic parameters for nine substrates and crystal structures complexed with eight cleavage products. CumD preferred substrates with long non-branched C6 substituents, but did not effectively hydrolyze a substrate with a phenyl group. Superimposition of the complex structures indicated that benzoate was bound in a significantly different direction than other aliphatic cleavage products. The directions of the bound organic acids appeared to be related with the k(cat) values of the corresponding substrates. The Ile139 and Trp143 residues on helix alpha4 appeared to cause steric hindrance with the aromatic ring of the substrate, which hampers base-catalyzed attack by water.
The crystal structure of the hydroxynitrile lyase from Sorghum bicolor (SbHNL) in complex with the inhibitor benzoic acid has been determined at 2.3 A resolution and refined to a crystallographic R-factor of 16.5%. The SbHNL sequence places the enzyme in the alpha/beta hydrolase family where the active site nucleophile is predicted to be organized in a characteristic pentapeptide motif which is part of the active site strand-turn-helix motif. In SbHNL, however, a unique two-amino acid deletion is next to the putative active site Ser158, removing thereby the putative oxyanion hole-forming Tyr residue. The presented X-ray structure shows that the overall folding pattern of SbHNL is similar to that of the closely related wheat serine carboxypeptidase (CPD-WII); however, the deletion in SbHNL is forcing the putative active site residues away from the expected hydrolase binding site toward a small hydrophobic cleft, which also contains the inhibitor benzoic acid, defining thereby a completely different SbHNL active site architecture where the traditional view of a classic triad is not given any more. Rather, we propose a mechanism involving general base catalysis by the carboxy-terminal Trp270 carboxyl group and proton transfer toward the leaving nitrile group by an active site water molecule. The unexpected interactions of the inhibitor with the new SbHNL active site also reveal the structural basis for the enzyme's limited substrate specificity. The implications of this structure on the evolution of catalysis in the hydroxynitrile lyase superfamily are discussed.
The structures of cofactor-free haloperoxidases from Streptomyces aureofaciens, Streptomyces lividans, and Pseudomonas fluorescens have been determined at resolutions between 1.9 A and 1.5 A. The structures of two enzymes complexed with benzoate or propionate identify the binding site for the organic acids which are required for the haloperoxidase activity. Based on these complexes and on the structure of an inactive variant, a reaction mechanism is proposed for the halogenation reaction with peroxoacid and hypohalous acid as reaction intermediates. Comparison of the structures suggests that a specific halide binding site is absent in the enzymes but that hydrophobic organic compounds may fit into the active site pocket for halogenation at preferential sites.