Title: Crystal structures of Trypanosoma brucei oligopeptidase B broaden the paradigm of catalytic regulation in prolyl oligopeptidase family enzymes Canning P, Rea D, Morty RE, Fulop V Ref: PLoS ONE, 8:e79349, 2013 : PubMed
Oligopeptidase B cleaves after basic amino acids in peptides up to 30 residues. As a virulence factor in bacteria and trypanosomatid pathogens that is absent in higher eukaryotes, this is a promising drug target. Here we present ligand-free open state and inhibitor-bound closed state crystal structures of oligopeptidase B from Trypanosoma brucei, the causative agent of African sleeping sickness. These (and related) structures show the importance of structural dynamics, governed by a fine enthalpic and entropic balance, in substrate size selectivity and catalysis. Peptides over 30 residues cannot fit the enzyme cavity, preventing the complete domain closure required for a key propeller Asp/Glu to fix the catalytic His and Arg in the catalytically competent conformation. This size exclusion mechanism protects larger peptides and proteins from degradation. Similar bacterial prolyl endopeptidase and archael acylaminoacyl peptidase structures demonstrate this mechanism is conserved among oligopeptidase family enzymes across all three domains of life.
        
Title: Crystal structure of Leishmania major oligopeptidase B gives insight into the enzymatic properties of a trypanosomatid virulence factor McLuskey K, Paterson NG, Bland ND, Isaacs NW, Mottram JC Ref: Journal of Biological Chemistry, 285:39249, 2010 : PubMed
Oligopeptidase B (OPB) is a serine peptidase with dibasic substrate specificity. It is found in bacteria, plants, and trypanosomatid pathogens, where it has been identified as a virulence factor and potential drug target. In this study we expressed active recombinant Leishmania major OPB and provide the first structure of an oligopeptidase B at high resolution. The crystallographic study reveals that OPB comprises two domains, a catalytic and a propeller domain, linked together by a hinge region. The structure has been determined in complex with the oligopeptide, protease-inhibitor antipain, giving detailed information on the enzyme active site and extended substrate binding pockets. It shows that Glu-621 plays a critical role in the S1 binding pocket and, along with Phe-603, is largely responsible for the enzyme substrate specificity in P1. In the S2 binding pocket, Tyr-499 was shown to be important for substrate stability. The structure also allowed an investigation into the function of residues highlighted in other studies including Glu-623, which was predicted to be involved in the S1 binding pocket but is found forming an inter-domain hydrogen bond. Additional important salt bridges/hydrogen bonds between the two domains were observed, highlighting the significance of the domain interface in OPB. This work provides a foundation for the study of the role of OPBs as virulence factors in trypanosomatids. It could facilitate the development of specific OPB inhibitors with therapeutic potential by exploiting its unique substrate recognition properties as well as providing a model for OPBs in general.
        
Title: Peptide aldehyde complexes with wheat serine carboxypeptidase II: implications for the catalytic mechanism and substrate specificity Bullock TL, Breddam K, Remington SJ Ref: Journal of Molecular Biology, 255:714, 1996 : PubMed
The structures of two ternary complexes of wheat serine carboxypeptidase II (CPD-WII), with a tetrapeptide aldehyde and a reaction product arginine, have been determined by X-ray crystallography at room temperature and -170 degrees. The peptide aldehydes, antipain and chymostatin, form covalent adducts with the active-site serine 146. The CPD-WII antipain arginine model has a standard crystallographic R-factor of 0.162, with good geometry at 2.5 A resolution for data collected at room temperature. The -170 degrees C model of the chymostatin arginine complex has an R-factor of 0.174, with good geometry using data to 2.1 A resolution. The structures suggest binding subsites N-terminal to the scissile bond. All four residues of chymostatin are well-localized in the putative S1 through S4 sites, while density is apparent only in S1 and S2 for antipain. In the S1 site, Val340 and 341, Phe215 and Leu216 form a hydrophobic binding surface, not a pocket, for the P1 phenylalanyl side-chain of chymostatin. The P1 arginyl of antipain also binds at this site, but the positive charge appears to be stabilized by additional solvent molecules. Thus, the hybrid nature of the S1 site accounts for the ability of CPD-WII to accept both hydrophobic and basic residues at P1. Hydrogen bonds to the peptide substrate backbone are few and are made primarily with side-chains on the enzyme. Thus, substrate recognition by CPD-WII appears to have nothing in common with that of the other families of serine proteinases. The hemiacetal linkages to the essential Ser146 are of a single stereoisomer with tetrahedral geometry, with an oxygen atom occupying the "oxyanion hole" region of the enzyme. This atom accepts three hydrogen bonds, two from the polypeptide backbone and one from the positively-charged amino group of bound arginine, and must be negatively charged. Thus, the combination of ligands forms an excellent approximation to the oxyanion intermediate formed during peptide hydrolysis. Surprisingly, the (R) stereochemistry at the hemiacetal linkage is opposite to that expected by comparison to previously determined structures of peptide aldehydes complexed with Streptomyces griseus proteinase A. This is shown to be a consequence of the approximate mirror symmetry of the arrangement of catalytic groups in the two families of serine proteases and suggests that the stereochemical course of the two enzymatic reactions differ in handedness.